小学数学《圆柱表面积》教案(14篇)

时间:2023-08-28 10:40:06 来源:网友投稿

下面是小编为大家整理的小学数学《圆柱表面积》教案(14篇),供大家参考。

小学数学《圆柱表面积》教案(14篇)

作为一位杰出的老师,编写教案是必不可少的,教案有助于顺利而有效地开展教学活动。那么问题来了,教案应该怎么写?下面是我给大家整理的教案范文,欢迎大家阅读分享借鉴,希望对大家能够有所帮助。

小学数学《圆柱的表面积》教案篇一

教材40页、41页例1、例2、例3及做一做,练习十第2-5题。

素质教育目标

(一)知识教学点

1.理解圆柱的侧面积和表面积的含义。

2.掌握圆柱侧面积和表面积的计算方法。

3.会正确计算圆柱的侧面积和表面积。

(二)能力训练点

能灵活运用求表面积、侧面积的有关知识解决一些实际问题。

教学重点

理解求表面积、侧面积的计算方法,并能正确进行计算。

教学难点

能灵活运用表面积、侧面积的有关知识解决实际问题。

教具学具准备

1.教师、学生每人用硬纸做一个圆柱体模型。

2.投影片。

教学步骤

一、铺垫孕伏

1.口答下列各题(只列式不计算)。

(1)圆的半径是5厘米,周长是多少?面积是多少?

(2)圆的直径是3分米,周长是多少?面积是多少?

2.长方形的面积计算公式是什么?

3.教师出示圆柱体模型,指同学说出它有什么特征?

二、探究新知

1.利用圆柱体模型的侧面展开图,引导学生概括出圆柱侧面积的计算方法。

(1)让学生观察议论:圆柱的侧面展开图(是长方形)的长与宽分别和圆柱底面周长与高的关系。

(2)引导学生概括出:因为长方形的面积等于长×宽,而这个长方形的长等于圆柱的底面周长,宽等于圆柱的高,长方形的面积就是圆柱的侧面积,所以圆柱的侧面积等于底面周长乘以高。

2.教学例1

(1)出示例1,指同学读题,找出已知条件和所求问题。

学生独立解答,并把计算步骤填在课本50页例1下面的空白处,然后订正。

板书:3。14×0。5×1。8

=1。75×1。8

≈2。83(平方米)

答:它的侧面积约是2。83平方米。

(2)反馈练习:完成做一做41页第1题。

学生独立解答,然后订正。

3.教学

(1)教师说明:圆柱的侧面积加上两个底面积就是。

(2)让学生利用圆柱体模型展开图进行比较、区别,从而使学生清楚:是指圆柱表面的面积,是侧面积加上两个底面积,而侧面积是指圆柱侧面的面积;
表面积包含着侧面积。

4.教学例2

(1)投影片出示例题2、圆柱的几何图形和表面积的展图。

(2)指同学读题,找出已知条件和所求问题。

(3)让学生观察圆柱表面积的展开图,并小组议论:让学生理解圆柱表面积的组成部分,再按顺序说出求表面积的具体过程。具体计算由学生完成。

(4)指学生板演,其他同学在练习本上做,并把计算结果填在书上。

教师巡视指导,注意检查学生的计算结果和计量单位是否正确。

做完后订正,订正时让学生说出有关的计算公式。

(5)反馈练习:完成做一做第2题。

指一名学生在小黑板上做,其他在练习本上做,然后订正,订正时让学生讲解题方法。

5.教学例3

(1)出示例3,指名读题,找出已知条件和所求问题。

(2)教师提示:解答这道题应注意什么?

启发学生说出:这道题是求做这个水桶要用铁皮多少平方厘米。实际上是求这个圆柱形水桶的表面积。题里告诉我们的“一个没有盖的圆柱形铁皮水桶”,计算时就是用侧面积加上一个底面积。

(3)学生在练习本上做,教师巡视指导,注意检查学生的计算结果。如果发现计算结果是1800平方厘米的让该生上黑板上做。

(4)订正,让板演的学生讲解题的思路和计算结果取近似值的方法。

(5)教师说明:这里不能用“四舍五入”法取近似值。在实际中,制作水桶使用的材料要比计算得到的数多一些,这样才能保证原材料够用。那么保留整百平方厘米时,十位上即使是4或比4小,也要向前一位进1。这种取近似值的方法叫做进一法,所以这题的计算结果应是1900平方厘米。

(6)“四舍五入”法与“进一法”有什么不同。

通过比较,使学生明白:“四舍五入”法在取近似值时,看要保留位数的后一位,是5或比5大的舍去尾数

小学数学《圆柱的表面积》教案篇二

【知识与技能】

结合教学用具和学生已有认知,探索圆柱表面积的计算方法,能正确计算圆柱的表面积和侧面积,并根据公式解决实际问题。

【过程与方法】

通过想象、操作等活动,知道圆柱侧面展开图是长方形的同时,熟记表面积的计算公式,发展空间观念。

【情感态度与价值观】

能根据具体情境,借助圆柱表面积的计算方法解决生活中的一些实际问题,体会数学与实际生活的密切联系。

【教学重点】

圆柱表面积的计算方法以及在生活中的应用。

【教学难点】

圆柱表面积的计算方法在生活中的应用。

(一)导入新课

师:在前面的学习中,我们已经认识了圆柱,并且知道了生活中有很多物体的形状是圆柱。大家来看,这个圆柱形状的物体。它的制作需要一定的材料(出示一个茶叶盒)请同学们想一想,要“制作这样一个茶叶盒需要多少材料”,实际上是在求圆柱的什么?(边演示边讲解)

(二)生成原理

(1)介绍圆柱的侧面积、底面积和表面积

师生活动:要求“制作茶叶盒所需的材料”实际上是求圆柱的侧面积和两个底面面积(边演示边说),我们把圆柱侧面的面积叫做圆柱的侧面积,把圆柱底面的面积叫做圆柱的底面积,圆柱的侧面积加上两个底面的面积叫做圆柱的表面积。

(2)创疑激趣

师:我们知道,圆柱的底面是圆,我们已经掌握了圆的面积,可是圆柱的侧面是一个曲面,我们又该怎么求它的面积呢?

(3)小组合作交流

师:请同学们想一想,我们能不能把圆柱的侧面转化成所学过的图形来求侧面积?(小组合作探究结合上节课所学的知识和圆柱的特征研究)ppt展示

小组汇报:圆柱的侧面积就等于长方形的面积,长方形的长等于圆柱底面的周长,宽等于圆柱的高,因此圆柱的侧面积也就等于圆柱的底面周长乘以高。

(4)学会计算圆柱的表面积

师:我们已经会求圆柱的侧面积,那圆柱的表面积呢?(让学生回答,教师板书求表面积的算式,并板书课题“圆柱的表面积”)

师生活动:用字母表示侧面积和底面积的话,该如何表示圆柱的表面积。

(三)深化原理

圆柱的表面积是圆柱的侧面积加上两个底面面积之和。如果圆柱只有一个底面,它的表面积则是侧面积和一个底面积之和。如水桶。

(四)应用原理

如果给圆柱形笔筒侧面裹一层彩纸,笔筒底面半径是5cm,高是10cm。那么想想得准备多少彩纸?

(五)课堂小结

师:今天收获了哪些知识?能不能用今天所学的知识制作一个常用的学习用品?能否设计一个笔筒?在设计过程中需要解决哪些问题?

生:测量、确定笔筒的大小

师:如何确定?

生:确定底面半径,还有笔筒的高

师:课后利用所学知识给自己设计一个笔筒,并做一下“做一做”。

小学数学《圆柱的表面积》教案篇三

圆柱的表面积(1)(教材第21页例3)。

1、理解圆柱的表面积的意义。

2、探索并掌握圆柱的侧面积和表面积的计算方法,会正确地计算圆柱的侧面积和表面积。

1、掌握圆柱的侧面积和表面积的计算方法。

2、理解圆柱的底面半径(直径)及圆柱的高和圆柱侧面的长、宽之间的关系。

多媒体课件和圆柱体模型。

1、复习引入。

指名学生说出圆柱的特征。

2、口头回答下面的问题。

(1)一个圆形花池,直径是5m,周长是多少?

(2)长方形的面积怎样计算?

板书:长方形的面积=长×宽。

1、教师出示圆柱形实物,师生共同研究圆柱的侧面积。

师:圆柱的侧面展开是一个什么图形?

生:长方形。

师:那么圆柱的侧面积与展开后的长方形的面积是什么关系?待学生回答后,教师板书:圆柱的侧面积=长方形的面积。

师:长方形的面积=长×宽,长相当于圆柱的什么?宽呢?由此可以得出什么?

教师待学生回答后接着板书“=圆柱的底面周长×高”,由此我们就找到了计算圆柱侧面积的方法。

2、教学例3。

(1)圆柱的表面积的含义。

教师:你们知道长方体、正方体的表面积指什么?圆柱的表面积指的又是什么?

通过讨论、交流使学生明确:圆柱的表面积是指圆柱的侧面和两个底面的面积之和。

(2)计算圆柱的表面积。

①师:圆柱的表面展开后是什么样的?

组织学生将制作的圆柱模型展开,观察展开的面是由哪几部分组成的,并把它们都标出来。引导学生说出:圆柱的表面是由两个底面和一个侧面组成。

②组织学生自主探究、交流,该如何计算圆柱的表面积。指名发言,教师归纳:圆柱的表面积=圆柱的侧面积+两个底面积。

(3)巩固练习:教材第21页“做一做”。组织学生独立完成,请两名学生板演后集体订正。

答案:628cm2

完成教材第23页练习四的第2~6题。

第2题教师提醒学生用圆柱形的纸筒代替压路机前轮滚动一周,使学生看到所压路面的面积就是前轮的侧面积。

第3、4题是解决问题。先让学生弄清楚是求圆柱哪部分的面积,然后再计算,必要时,可通过教具或图形帮助学生直观理解。

第5题,对于有困难或争议大的,可用实物或模型直观演示。

第6题,是实际测量、计算用料的题目,可以分组进行测量和计算。

答案:

第2题:3、14×1、2×2=7、536(m2)

第3题:3、14×1、5×2、5=11、775(m2)

第4题:3、14×3×2+3、14×(3÷2)2=25、905(m2)

第6题:长方体:800cm2正方体:216dm2圆柱:533、8cm2

通过这节课的学习,你有哪些收获?

完成练习册中本课时的练习。

第2课时圆柱的表面积(1)

小学数学《圆柱的表面积》教案篇四

1.经历认识圆柱展开图和探索表面积计算方法的过程。

2.认识圆柱展开图,掌握圆柱表面积的计算方法,会计算圆柱的表面积。

3.积极参加数学活动,建立展开图与圆柱侧面、底面的联系,发展初步的空间观念。

圆柱体表面积公式的推导。

运用表面积公式计算实际图形的表面积。

圆柱表面展开示意图。

1.齐读课题。

师:看到这个课题,你们想到了哪些与之相关的知识。

生:长方体和正方体的表面积;
圆柱的底面和侧面。

2.复习相关知识

(1)什么是长方体、正方体的表面积?它们是怎么计算的?

1.课件出示圆柱,揭示圆柱的表面积公式

师:根据刚才的讨论,你能说说应该要求出圆住的表面积,必须哪些条件吗?并说说理由。

生:因为圆柱的表面有一个侧面和两个底面。所以用一个侧面积加上两个底面积。

2.教学圆柱的表面积

(1)师:(课件出示上堂课中圆柱的侧面展开图),上堂课,我们研究了圆柱的侧面展开图,以及圆柱侧面积的计算方法,今天我们来进一步讨论圆柱表面积的计算方法。

(2)谁还记得圆柱侧面积的计算公式。

学生:圆柱的侧面积=底面周长高

(3)拿一个圆柱形的纸盒,指出它的侧面和两个底面。然后展开,使学生直观看到圆柱展开图是两个同样大的圆和一个长方形。

(4)议一议:怎样求圆柱的表面积?学生讨论。

学生:圆柱的表面积就是用圆柱的侧面积加上两个底面积。

(4)教学例题:

出示教材中圆柱示意图,让学生了解圆柱的高和半径,鼓励学生自己尝试计算。

(5)交流学生计算的方法和结果。如果出现列综合算式的,要给予表扬。如果没有。提出兔博士的话,鼓励学生尝试,老师可进行必要的"指导。

试一试

(1)提出试一试的问题,让学生尝试计算。

(2)交流计算的过程和结果。重点说说计算的过程和方法,注意本题中给出已知条件是圆柱的底直径。

练一练1:则由学生独立完成。

练一练2:此题是一个半圆柱体,应该怎样理解它的表面积,学生充分发表意见后再让学生自己来完成。

练一练3:先指导学生明确解决问题的思路,再自主解答。

自己找一个圆柱体的物体,来测量它的数据并计算出它的表面积。

小学数学《圆柱的表面积》教案篇五

1.认识掌握圆柱各部分名称,建立圆柱体空间概念;

2.掌握圆柱体侧面积、表面积的计算方法,并能具体应用。

1.:推导圆柱体侧面积的计算方法。

2.教学难点:圆柱体侧面积公式的推导过程。

师:我们已经学习了不少几何图形。现在看老师手里拿的是什么图形?

生:长方形。

师把长方形贴在黑板上。

师:面积如何求?

生:长方形面积=长×宽。(师板书)

师又拿出正方形,问相同的问题,然后把这个正方形贴在长方形旁边。再拿出圆形。

师:圆的面积和周长公式是什么?给什么条件能求出圆的面积和周长?

然后把圆形贴在长方形上面。再出一些练习题进行圆面积和周长的计算。强调计量单位。

师又拿出长方体、正方体。当拿出圆柱体时,同学们都能回答是圆柱体。接着让他们举一些日常生活中经常见到的圆柱形物体。再让他们拿出自己事先准备的圆柱体(如果提出似是而非的问题时,先不要进行讨论。)这时老师也拿出一些实物:手电筒里的反光罩、罐头盒、小鼓、印章、烟囱的半个拐脖,问这些实物叫不叫圆柱体?为什么不叫圆柱体?

师:今天我们就来学习一种新的形体——圆柱体。(板书课题——圆柱)

1.圆柱体的认识。

师:现在找一个同学到前面摸一摸圆柱体有哪几个面。(指名上前摸。)

生:上、下两个面和周围一个面。

师:上、下两个面是什么形状?它们的面积大小怎样?

生:上、下两个面是圆形,面积相等。

师:我们把圆柱上、下两个面叫做底面。(板书:底面)

师:周围的这个面是个曲面。我们把周围的这个面叫做侧面。(板书:侧面)

师:我们把一个圆在平面上滚动一周,痕迹是一条线段。如果把这个圆柱在平面上滚动一周,它的侧面留下的痕迹将是一个什么形状?同学们可以自己用手中的学具动手滚一下,能体会出是一个什么形状?

生:是一个长方形。

师演示:将圆柱体侧面展开得到一个长方形。(与黑板贴的长方形一样大。)

师接着拿出两个高矮不一样的圆柱体。

师问:为什么有高有矮呢?由什么决定的?

生:由高决定的。

师:什么是圆柱的高呢?(板书:高。写在长方形宽处。)看看书上是怎么讲的。(看书第50页,找同学回答。)老师在圆柱侧面上画一条垂直于底面的线段,这条线段就是这个圆柱的高。

师出示投影,让学生指出高。

师:圆柱的高有多少条?

生:无数条。

师:高都相等吗?

生:都相等。

师:现在我们来回答刚才举的一些物体不是圆柱体的原因。(先让同学们说自己手中的,最好让本人说,然后再说老师手中的实物。)

师:我们讲的圆柱体都是直圆柱。

2.圆柱的侧面积。

(1)推导公式。

师:圆柱侧面图是一个长方形。下面同学们四人一组对照手中的圆柱体学具进行讨论。

讨论题目是:

a:这个长方形与圆柱体有哪些关系?

b:你能推导出圆柱体侧面积计算方法吗?

然后学生汇报讨论结果。

生:这个长方形的长等于圆柱体的底面周长,宽等于圆柱的高,长方形面积等于圆柱的侧面积。从而得出;
圆柱体侧面积=底面周长×高。用字母公式表示为:s侧=ch。

老师板书公式。

(2)利用公式计算。

例1 一个圆柱,底面的直径是05米,高是18米,求它的侧面积。(得数保留两位小数)

老师在黑板上板演。

下面同学们进行练习。投影练习题:

①一圆柱底面半径是5厘米,高5厘米,求侧面积。

②一圆柱底面半径是2分米,高是直径的2倍,求它的侧面积。

③一圆柱底面周长是12厘米,高12厘米,求它的侧面积。

师:你能知道第③题圆柱侧面展开图是什么图形吗?

3.圆柱的表面积。

师在课题“圆柱”后面接着写“的表面积”。

(1)推导公式。

师:同学们已经学会求圆柱的侧面积。如果求这个圆柱的表面积,你会求吗?(老师同时演示圆柱体平面展开图,让同学们进行讨论。)

生汇报讨论结果,老师板书公式:

s表=s侧+2s圆

(2)利用公式计算。

(投影出示)

例2 计算圆柱体的表面积(见下图)。(单位:厘米)

同学说思路,老师板书,注意每一步结果写计量单位。

解 ①侧面积:2×314×5×15=471(平方厘米)

②底面积:314×52=785(平方厘米)

③表面积:471+785×2=628(平方厘米)

答:它的表面积是628平方厘米。

例3 一个没有盖的圆柱形铁皮水桶,高是24厘米,底面直径是20厘米。做这个水桶要用铁皮多少平方厘米?(得数保留整百平方厘米。)

同学说思路,列式。老师把正确的解答用投影打出来。

(1)水桶的侧面积

314×20×24=15072(平方厘米)

(2)水桶的底面积

314×(20÷2)2

=314×102

=314×100

=314(平方厘米)

(3)需要铁皮

15072+314=18212≈1900(平方厘米)

答:做这个水桶要用铁皮1900平方厘米。

小结:今天我们学习了哪些知识?(指名回答)下面我们来检查一下,这节课谁学习得最好?

(1)看书第54页第1题。

(2)投影,指出下面圆柱体的高是几?

(3)有一节直径10厘米的烟囱,长3米。这节烟囱用铁皮多少平方米?(只列式)

(4)一种轧道机,后轮直径132米,长127米。如果后轮每分钟转动6周,每分钟可轧路面多少平方米?(只列式)

(5)做一对无盖水桶,要求底面半径15厘米,高4分米。至少需用铁皮多少平方分米?(结果保留一位小数。)

(6)一种圆柱形小油漆桶,底面周长5024厘米,高20厘米。每个桶用铁皮多少平方分米?(四人讨论后口头回答。)

学生做,老师巡视,找几个同学把题写在玻璃片上,然后全体订正。

思考题:

(1)你要做一个圆柱体,先确定什么条件?你是怎样做的?

(2)我们在学习圆面积时,用两个完全一样的圆拼成一个近似长方形的方法推导出圆面积的公式,你能用这种方法推导出求圆柱体的表面积的另外一种计算方法吗?并用此方法做第(6)题,比较哪种方法简便?

提示:

本节课的教学设计分三个层次。

第一层次,使学生认识圆柱体底面、侧面和高。通过让学生观察实物和教具,以及插图和自己举日常生活中的实例,并让学生亲自动手摸一摸、看一看,使学生能准确地掌握圆柱体的特征。

第二层次,推导圆柱体的侧面积计算公式和表面积计算方法。

首先让学生讨论圆柱侧面展开的这个长方形与圆柱之间的关系。老师用圆柱体在黑板上贴有长方形处滚动一周,使学生了解到这个长方形的长就是底面周长,长方形的宽就是这个圆柱的高,从而用已学过的长方形面积公式很自然地推导出求圆柱体的侧面积公式。在这个基础上再加上两个圆面积,引导学生理解圆柱表面积的意义,从而总结出求圆柱的表面积的计算方法。使学生认识到立体转平面、形变量不变的辩证关系,培养同学们的观察分析能力。

第三层次是针对本节课所学知识设计的一些联系实际的应用题。安排有:只有侧面的圆柱形;
只有一个底面的圆柱形;
两个底面都有的圆柱形。同时计量单位有所不同。这样培养学生认真审题的好习惯,提高学生灵活应用能力,有利于发展学生的空间概念。

小学数学《圆柱的表面积》教案篇六

圆柱的表面积练习课

教材14页例4和练习二余下的练习。

1、会正确计算圆柱的侧面积和表面积,能解决一些有关实际生活的问题。

2、培养学生良好的空间观念和解决简单的实际问题的能力。

运用所学的知识解决简单的实际问题。

运用所学的知识解决简单的实际问题。

1、圆柱的侧面积怎么求?(圆柱的侧面积=底面周长×高)

2、圆柱的表面积怎么求?(圆柱的表面积=圆柱的侧面积+底面积×2)

3、练习二第14题:根据已知条件求出圆柱的侧面积和表面积。(只列式,不计算)

(1)出示例4。学生读题,明确已知条件(已知圆柱的高和底面直径,求表面积)

(2)求的是厨师帽所用的材料,需要注意些什么?(厨师帽没有下底面,说明它只有一个底面)

(3)指定两名学生板演,其他学生独立进行计算.教师行间巡视,注意察看最后的得数是否计算正确。(做完后,集体订正。指名学生回答自己在计算时,最后的得数是怎样取得的。由此指出:这道题使用的材料要比计算得到的结果多一些。因此,这里不能用四舍五入法取近似值。这道题要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1。这种取近值的方法叫做进一法。)

①侧面积:3.14×20×28=1758.4(平方厘米)

②底面积:3.14×(20÷2)2=314(平方厘米)

③表面积:1758.4+314=20**.4≈20**(平方厘米)

5.小结:

在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积.如计算烟筒用铁皮只求一个侧面积;水桶用铁皮是侧面积加上一个底面积;油桶用铁皮是侧面积加上两个底面积,求用料多少,一般采用进一法取值,以保证原材料够用.

1、练习二第9题

(1)学生通过读题理解题意,思考“抹水泥的部分”是指哪几个面?(侧面和下底面,也就是只有一个底面积)

(2)指名板演,其他学生独立完成于课堂练习本上。

2、练习二第17题

先引导学生明确题意,求用彩纸的面积就是圆柱的表面积减去(78.5×2)平方厘米,再组织学生独立练习,集体订正。

3、练习二第13题

(1)复习长方体、正方体的表面积公式:

长方体的表面积=(长×宽+长×高+宽×高)×2

正方体的表面积=棱长×棱长×6

(2)学生独立完成第13题:计算长方体、正方体、圆柱体的表面积,并指名板演。

4、练习二第19题

(1)学生小组讨论:可以漆色的面有哪些?

(2)通过教具演示,使学生明白圆柱及长方体表面被遮住的部分刚好是圆柱的三个底面积。因此,计算油漆的面积就是计算长方体表面积与圆柱侧面积之和减去圆柱的一个底面积。

(3)提醒学生将计算结果化成以平方米为单位的数,并可根据实际情况保留两位小数。

练习二第10、15、20题

第三课时教学反思

学生有上一节课扎实的表面积教学作基础,这节课例4的学习显得十分轻松。在这一环节,学生共提出两个有价值的问题:“求做这样一顶帽子需要多少面料,也就是求哪几部分的面积总和?”“结果20**.4按四舍五入法保留整十数应该约等于20**,可为什么教材中应是约等于20**?”我在此环节,将教学重点放在联系生活实际,引导学生思考所求问题到底是求什么,即要求学生能够具体问题具体分析。在教学完例题后,运用一组选择题,提升学生灵活应用知识解决实际问题的能力。练习题目如下:

做通风管需要多少铁皮

圆柱形水池的占地面积

做无盖的圆柱形水桶需要多少铁皮

做圆柱形油桶需要多少铁皮

卫生纸中间硬纸轴需要多大的硬纸板

求水池底部和四周贴瓷砖的面积

压路机滚筒滚动一周的面积

(1)求侧面积;(2)求1个底面积与侧面积的和;(3)求底面积;(4)求2个底面积与侧面积的和

指导练习内容较多,难以在一课时完成,所以准备再补充一节练习课。

两个惊喜

1、没想到班上有一名同学(数学科代表袁文杰)通过比的知识发现了底面积与侧面积之间的倍数关系,从而利用这一关系提高求表面积的速度。因为底面积=πr2,而圆柱体的侧面积=2πrh,所以s底:s侧=(πrr):(2πrh)=r:2h,2s底:s侧=r:h。当已知圆柱体底面半径和高求表面积时,如果先求出圆柱体侧面积,就可用侧面积÷h×r快速求出两个底面的面积,从而提高计算速度。

2、没想到班上居然有一名同学(数学科代表江赐阳阳)会用课前我查找资料中所介绍的转化方法来推导圆柱体的表面积。在他的带领下,同学们推导得出新的表面积计算公式:圆柱体的表面积=圆柱的底面周长×(高+底面半径)。正因为了解到这种方法,在练习中计算已知底面周长3.14米,高5米,求表面积时,全班前30名同学完成的同学不约而同地采用了这种方法,体现出这种方法对于已知周长和高求表面积的简便之处。

小学数学《圆柱的表面积》教案篇七

教学内容:教材第4~5页例2、例3和练一练及练习一。

1.使学生理解和掌握圆柱体表面积的计算方法,能根据实际情况正确地进行计算,培养学生解决简单的实际问题的能力。让学生认识取近似值的进一法。

2.进一步培养学生观察、分析和推理等思维能力,发展学生的空间观念。

教具学具准备:教师准备一个圆柱模型(表面要有可揭下各个部分的一层纸);
学生准备一个圆柱体。

教学重点:掌握圆柱侧面积的计算方法。

教学难点:能根据实际情况正确地进行计算。

1.复习圆柱的特征。提问:圆柱有什么特征?

2.计算下面圆柱的侧面积(口头列式):

(1)底面周长4.2厘米,高2厘米。

(2)底面直径3厘米,高4厘米。

(3)底面半径1厘米,高3.5厘米。

3.提问:圆柱的一个底面面积怎样计算?

4.引入新课。

我们已经会计算圆柱的侧面积,那么怎样计算圆柱的表面积呢?这节课就学习圆柱的表面积计算,(板书课题)

1.认识表面积计算方法。

(1)请同学们拿出圆柱来看一看,想一想圆柱的表面包括哪几个部分,然后告诉大家。指名学生拿出圆柱,边指边说明它的表面包括哪几个部分。

(2)教师演示。

出示教具,说明把表面全部展开,看一看得到什么图形,和大家说的对不对。揭下圆柱表面的纸,贴在黑板上,再与圆柱对比说明各个部分,明确圆柱表面包括一个侧面和两个相等的圆。

(3)得出公式。

请同学们看着表面展开的图形说一说,圆柱的表面积应该怎样计算?(板书:圆柱的表面积:侧面积+两个底面积)追问:圆柱的侧面积怎样算?圆柱的一个底面积怎样算?

2.教学例2。

出示例2,学生读题。提问:这道题分哪几步来算?你们会做吗?指名一人板演,其余学生做在练习本上。集体订正,让学生说说每一步的具体含义,是怎样算的。

3.组织练习。

做练一练。指名两人板演,其余学生做在练习本上。集体订正,说说这两题计算时有什么不同的地方,为什么?指出:计算圆柱的表面积,要注意题里的条件,正确列出算式计算。

4.教学例3。

出示例3,学生读题。提问:这道题实际是求什么?这里求表面积与例2有什么不同,为什么?(只要用侧面积加一个底面积)指名学生板演,其余学生做在练习本上。集体订正,追问为什么只加一个底面积。

5.组织练习。

(1)第七页第四题(2)。先小组合作讨论,再书面练习,然后集体订正。

这节课学习子什么内容?你学到了些什么?指出:求圆柱表面积在实际应用中,要注意题里的实际情况,弄清什么时候要侧面积加两个底面积,什么时候要侧面积加一个底面积,什么时候只要求侧面积,然后计算结果。另外,在求需要材料取近似数时,一般要用四舍五入法。

练习一第8、10、11题及数训。

圆柱的表面积

圆柱的表面积=圆柱侧面积+两个底面的面积

例2(1)s侧:20**.1444=5526.4(平方厘米)

(2)s底:20203.14=1256(平方厘米)

(3)s表:5526.4+12562=8038.4(平方厘米)

答:-------。

小学数学《圆柱的表面积》教案篇八

23-24页

1、进一步巩固圆柱侧面积、底面积、表面积的计算方法,体会这些计算方法的联系和区别。

2、引导学生运用所学的圆柱表面积的知识解决相关的实际问题。

通过解决实际问题,加深学生对圆柱表面积计算方法的理解,培养学生灵活运用所学的知识解决实际问题的能力,发展学生的空间观念。

与练习六中的练习相关的图片。

一、复习引入

1、什么是圆柱的表面积?包括哪几个部分?怎么求圆柱的表面积?其中圆柱的底面积怎么算?侧面积呢?

2、揭示要求:这节课,我们要运用所学的有关知识,解决生活中的相关问题,希望通过问题的解决,来加深对圆柱表面积的认识。

二、基本练习

1、出示练习六第3题,理解表格意思。

2、第一行中,已知什么?怎么算出这个圆柱的侧面积、底面积和表面积?

各自计算,算后填写在书中表格里,再交流方法和得数。

3、第二行中,已知什么?怎么算出这个圆柱的侧面积、底面积和表面积?

各自计算,算后填写在书中表格里,再交流方法和得数。

4、如果已知一个圆柱的底面周长是6.28分米,高是3分米,怎么算出这个圆柱的侧面积、底面积和表面积?

各自计算,算后交流方法和得数。

三、综合练习

1、完成练习六第4题。

⑴讨论:求做这个通风管要多大的铁皮,实际上是算哪个面的面积?为什么?

⑵各自练习后交流算法。

2、完成练习六第5题。

⑴讨论:需要糊彩纸的面是什么?要求彩纸的面积就是算圆柱的哪几个面积?为什么?

⑵各自练习后交流算法和结果。

3、讨论练习六第7题。

⑴出示“博士帽”问:认识它吗?什么样的人可以拥有博士帽?

⑵看看,这个博士帽是怎么做成的,包括哪几个部分?

⑶出示条件:这个博士帽上面是边长30厘米的正方形,下面的底面直径16厘米,高为10厘米的圆柱。

你能算出,做一顶这样的博士帽需要多少平方分米的黑色卡纸?

⑷各自计算,算后交流算法和结果。

⑸如果要做10顶呢?怎么算?

3、讨论练习六第8题。

⑴出示题目,让学生读题,理解题目意思。

⑵讨论:塑料花分布在这个花柱的哪几个面上?

要算这根花柱上有多少朵花,需要先算出哪几个面的面积?分别怎么算?

算出上面和侧面的面积后,怎么算?为什么?

4、讨论解答练习六第9题。

⑴出示题目,读题,理解题目意思。

⑵尝试列式。

⑶交流算法:

这题先算什么?再算什么?最后算什么?

怎么算一根柱子的侧面积的?为什么不要算底面积?

四、全课

五、作业:练习六6、7、8、9题。

小学数学《圆柱的表面积》教案篇九

1、培养学生认真仔细地好习惯。

2、培养学生良好的空间观念和解决简单的实际问题的能力。

3、会正确计算圆柱的侧面积和表面积,能解决一些有关实际生活的问题。

运用所学的知识解决简单的实际问题。

运用所学的知识解决简单的实际问题。

小黑板

一、复习:

1、圆柱的侧面积怎么求?

(圆柱的侧面积=底面周长×高)

2、圆柱的表面积怎么求?

(圆柱的表面积=圆柱的侧面积+底面积×2)

3、练习四第1题:

根据已知条件求出圆柱的侧面积和表面积。

(第②题已知圆柱的底面周长,对于求侧面积较有利。但在求底面积时,要先应用c÷π÷2来求出圆柱的底面半径)

二、实际应用:

1、练习四第6题:

(1)复习长方体、正方体的表面积公式:

长方体的表面积=(长×宽+长×高+宽×高)×2

正方体的表面积=棱长×棱长×6

(2)学生独立完成第6题:

计算长方体、正方体、圆柱体的表面积,并指名板演。

2、练习四第7题:

(1)用教具辅助,引导学生思考:前轮转动一周,压路面的面积是指什么?(通过圆柱教具的直观演示,使学生看到所压路面的面积就是前轮的侧面积)

(2)学生独立完成这道题,集体订正。

3、练习四第9题:

(1)学生通过读题理解题意,思考“抹水泥的部分”是指哪几个面?(侧面和下底面,也就是只有一个底面积)

(2)指名板演,其他学生独立完成于课堂练习本上。

4、练习二第13题:

(1)学生读题理解题意后尝试独立解题。

(2)集体评讲,让学生理解计算“制作中间的轴需要多大的硬纸板”,就是计算硬纸轴的侧面积,卫生纸的宽度就是硬纸板的高度。

5、 第11题:

(1)学生小组讨论:可以漆色的面有哪些?

(2)通过教具演示,使学生明白圆柱及长方体表面被遮住的部分刚好是圆柱的三个底面积。因此,计算油漆的面积就是计算长方体表面积与圆柱侧面积之和减去圆柱的一个底面积。

(3)提醒学生将计算结果化成以平方米为单位的数,并可根据实际情况保留近似数。

小学数学《圆柱的表面积》教案篇十

教学目标

1.能根据具体情境,灵活运用圆柱表面积的计算方法解决生活中一些简单的问题,感受到数学与生活的密切联系。

2.通过想象、操作等活动,知道圆柱侧面展开后可以是一个长方形,加深对圆柱特征的认识,发展空间观念。

3.结合具体情境和动手操作,探索圆柱侧面积的计算方法,掌握圆柱侧面积和表面积的计算方法,能正确计算圆柱的侧面积和表面积。

教学重点

认识圆柱侧面展开图的多样性。

教学难点

能够将展开图与圆柱体的各部分建立联系,并推导出圆柱侧面积、表面积的计算公式。

教学用具

课件、圆柱体的瓶子、剪子

教学过程

拿出圆柱体茶叶罐,谁能说说圆柱由哪几部分组成的?想一想工人叔叔做这个茶叶罐是怎样下料的?(学生会说出做两个圆形的底面再加一个侧面)那么大家猜猜侧面是怎样做成的呢?(说说自己的猜想)

研究圆柱侧面积:

1.独立操作:利用手中的材料(纸质小圆柱,长方形纸,剪刀),用自己喜欢的方式验证刚才的猜想。

2.观察对比:观察展开的图形各部分与圆柱体有什么关系?

3.小组交流:能用已有的知识计算它的面积吗?

4.小组汇报

(选出一个学生已经展开的图形贴到黑板上)

重点感受:圆柱体侧面如果沿着高展开是一个长方形。(这里要强调沿着高剪)这个长方形与圆柱体上的那个面有什么关系?(长方形的长是圆柱体底面周长、长方形的宽是圆柱体的高)

长方形的面积=圆柱的侧面积即 长宽 =底面周长高,所以,

圆柱的侧面积=底面周长高 s 侧 == c h

如果已知底面半径为r,圆柱的侧面积公式也可以写成:s侧=2rh

如果圆柱展开是平行四边形,是否也适用呢?

学生动手操作,动笔验证,得出了同样适用的结论。(因为刚才学生是用自己喜欢的方式剪开的,所以可能已经出现了这种情况。此时可以让已经得出平行四边形的学生介绍一下他的剪法,然后大家拿出准备好的圆柱纸盒用此法展开)

研究圆柱表面积:

1.现在请大家试着求出这个圆柱体茶叶罐用料多少。

学生测量,计算表面积。

2.圆柱体的表面积怎样求呢?

得出结论:圆柱的表面积 = 圆柱的侧面积+底面积2

3.动画:圆柱体表面展开过程

1.解决书上的例题。

2.填空。

圆柱的侧面沿着高展开可能是( )形,也可能是( )形。第二种情况是因为( )。

3.要求一个圆柱的表面积,一般需要知道哪些条件( )。

4.教材第六页试一试。

小学数学《圆柱的表面积》教案篇十一

1、学习圆柱的侧面积和表面积的含义,并掌握圆柱侧面积和表面积的计算方法。

2、会正确计算圆柱的表面积和侧面积,能解决一些有关实际生活的问题。

掌握圆柱侧面积和表面积的计算方法。

运用所学的知识解决简单的实际问题。

1、圆柱有几个面?分别是 、 和 。

2、底面是 形,它的面积= 。

3、侧面是一个曲面,沿着它的高剪开,展开后得到一个 形。它的长等于圆柱的 ,宽等于圆柱的 。

4、一个圆形水池,直径是5米,沿着水池走一圈是多少米?

1、圆柱的侧面积

(1)圆柱的侧面积指的是什么?

(2)圆柱的侧面积的计算方法:

圆柱的侧面展开后是一个长方形,这个长方形的面积就等于圆柱的侧面积。因为长方形的面积= ,所以圆柱的侧面积= 。

(3)侧面积的练习

求下面各圆柱的侧面积。

①底面周长是1.6m,高0.7m。

②底面半径是3.2dm,高5dm。

小结:要计算圆柱的侧面积,必须知道圆柱的 和 这两个条件,有时题里只给出直径或半径,底面周长这个条件可以通过计算得到,在解题前要注意看清题意再列式。

2、圆柱的表面积

(1)圆柱的表面是由 和 组成。

(2)圆柱的表面积的计算方法:

圆柱的表面积=

(3)圆柱的表面积练习题

一顶圆柱形厨师帽,高28cm,帽顶直径是20cm,做这样一顶帽子需要用多少面料?(得数保留整十平方厘米)

分析,理解题意:求需要用多少面料,就是求帽子的 。需要注意的是厨师帽没有下底面,说明它只有 个底面。

列式计算:

① 帽子的侧面积=

② 帽顶的面积=

③ 这顶帽子需要用面料=

小结:在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积。如计算烟囱用铁皮只求一个侧面积;
水桶用铁皮是侧面积+一个底面积;
油桶用铁皮是侧面积+2个底面积。求用料多少,一般采用进一法取值,以保证原材料够用。

3、巩固练习

一个圆柱底面半径是2dm,高是4.5dm,求它的表面积。

4、总结:通过这节课的学习,你掌握了什么知识?

圆柱的侧面积

圆柱的表面积

布置学生课下复习本节课内容。

小学数学《圆柱的表面积》教案篇十二

1.经历灵活运用知识自主解决实际问题的过程。

2.能灵活运用圆柱表面积的知识解决生活中的简单实际问题。

3.体验数学在日常生活中的广泛应用,培养应用意识。

运用圆柱表面积公式计算水桶的表面积。

注意水桶的表面积只有一个底面积。

观察教材中无盖圆柱形铁皮水桶示意图,了解提供的信息。

师:读题之后,你有什么想对同学们说的?

生:这道题是求做这个水桶要用铁皮多少平方厘米,实际上是求这个圆柱形水桶的表面积。题里告诉我们的一个没有盖的圆柱形铁皮水桶,计算时就是用侧面积加上一个底面积。

多人板演,一人说想法。

水桶的侧面积:3.143035=3297(平方厘米)

水桶的底面积:3.14(302)2

=3.14152

=3.14225

=706.5(平方厘米)

需要铁皮:3297+706.5=4003.5(平方厘米)

答:做这个水桶要用4003.5平方厘米。

1)读题理解题意。先讨论一下:画水桶用料的示意图,应该画什么?再让学生自己计算并画出水桶示意图。

注意水桶底面直径和高都是20厘米,怎样在图上画出来。

有的学生可能会说运用比例尺,老师要加以表扬。

2)交流学生画图的过程和结果。

1.先让学生独立完成,再交流。

选择哪一个蛋糕盒,说一说自己选择蛋糕盒的合理性。

2.读题,使学生了解木墩的底面不漆。

3.读题,帮助学生理解题意,接缝处按1厘米计算怎样运用到题中,也就是怎样处理。学生可能不理解,这时老师可进行提示,把这一厘米应该加在底面周长上,也就是计算出底面周长后再加上1厘米,再去乘高,才是一节烟囱的侧面积。

这节课我们所研究的是有关圆柱表面积的计算问题,圆柱的表面积在实际应用时要注意什么呢?

归纳:圆柱的表面积,在实际应用时,要根据实际需要计算各部分的面积,必须灵活掌握。如油桶的表面积是侧面积加上两个底面积;
无盖的水桶的表面积是侧面积加上一个底面积;
烟筒的表面积只求侧面积。另外,在生产中备料多少,一般采用进一法,就是为了保证原材料够用。

(一)求出下面各圆柱的侧面积。

1.底面周长是1.6米,高是0.7米。

2.底面半径是3.2分米,高是5分米。

(二)拿一个茶叶桶,实际量一下底面直径和高,算出它的表面积。(有盖和无盖两种)

(三)练一练第3小题。

小学数学《圆柱的表面积》教案篇十三

1、复习圆柱体的特征

师:圆柱是由平面和曲面围成的立体图形。圆柱上下两个圆形的平面叫圆柱的什么?它们的关系怎样?两底面之间的距离叫什么?这个曲面叫什么?(学生回答后课件动画闪烁各部分名称)

2、拿出圆柱体茶叶罐:想一想工人叔叔做这个茶叶罐是怎样下料的?(学生会说出做两个圆形的底面再加一个侧面)请大家猜一猜圆柱侧面是怎样做成的呢?

引入:今天这节课,我们就一起来学习圆柱的表面积。

设计意图:通过复习,再次让学生明白圆柱的特征,同时创设“制作圆柱体茶叶罐怎样下料的问题”,激发学生的求知欲,也体现出学数学的价值。】

(一)教学圆柱表面积的意义。

设疑:长方体6个面的总面积,叫做它的表面积。什么是圆柱体的表面积呢?(学生回答,教师板书:侧面积+底面积×2 =表面积)

要求圆柱的表面积,首先应该计算出它的底面积和侧面积。

(二)测量直径,计算圆柱的底面积。

圆柱的底面是圆形,怎样计算它的面积吗?(s=∏r2)需要知道什么条件? 现场测量茶叶桶的底面直径。(注意方法指导:量出底面最长的线段即直径的长度。课件动画展示测量方法)

学生口答算式和结果

(三)教学圆柱体侧面积的计算

1、引导探究圆柱体侧面积的计算方法。

(1)设疑:圆柱的侧面是个曲面,怎样计算它的面积呢?

想一想,能否将这个曲面转化成我们学过的平面图形,从中思考发现它的侧面积该怎样计算呢?

(2)学生动手操作。(剪圆柱形纸筒)

(3)汇报交流研究结果。(随着学生回答课件展示)

百度图片:

小结:同学们会动脑,会思考,巧妙地运用了把曲面转化为平面的方法,探讨发现了圆柱体侧面积正好等于它的底面周长与高的乘积。

2、计算圆柱体茶叶罐的侧面包装纸的面积

师:(课件呈现圆柱茶叶罐侧面包装图片)

求圆柱体茶叶罐的侧面包装纸的面积实际是求圆柱的什么?(侧面积) 再次测量茶叶桶的高,并把结果记录下来,独立计算。

(四)教学求圆柱的表面积。

1、设疑:学会了计算圆柱的底面积和侧面积,怎样计算它的表面积?

2、学生根据数据进行计算。

3、汇报计算方法及结果,强调单位的使用

小结:求茶叶桶的表面积是为工人师傅下材料提供了基本数据,但是在准备材料时往往会比计算结果多一些,因为在具体操作时,尤其是在剪圆的时候会产生浪费现象,这是不可避免的。

【设计意图:教师抓住圆柱表面积中的侧面积是学生学习的难点这一问题,通过四个层次的学习,有详有略,凸显本节课的重难点。教师让学生动手操作,经历圆柱侧面展开的过程,通过小组交流讨论,推导出了圆柱侧面面积的计算方法,有效的培养了学生的动手操作能力,适时渗透“转化”思想,学生的空间观念和思维能力得到锻炼。】

(一)(多媒体出示圆柱形的油漆桶,无盖水桶、烟筒实物图)引导学生观察思考:计算制作这些物体所用的铁皮的面积,各是求哪些面的总面积?通过回答让学生感知圆柱表面积在实际生活中应用的意义。

(二)根据要求练习。

1、一个圆柱形油桶,底面直径是8分米,高是12分米,它的占地面积有多大?(只列式不计算)

2、一台压路机的滚筒宽1.2米,直径为8分米。如果它滚动1周,压路的面积是多少平方米?(只列式不计算)(课件呈现压路机压路情景)

3、做一个无盖的圆柱形铁皮水桶,高是5分米。底面直径4分米,至少需要多大面积的铁皮?(结果保留整数)

根据学生的计算结果,教学用“进一法”取近似值。

小结:计算圆柱的表面积要具体情况具体分析。要学会运用所学的知识合理灵活地解决生活中的实际问题。

(三)操作练习。

根据练习要求,小组合作测量计算制作所带的圆柱形实物的用料面积。

讨论:要计算制作这个圆柱形物体用料的面积,是求哪些面的总面积?需要知道哪些条件?怎样测量这些数据?

测量:借助工具测量出需要的数据(取整厘米数),并做好记录。

计算:根据量得的数据,列出相应的算式并算出结果。

【设计意图:数学源于生活,又用于生活。教师设计不同层次的练习题,一方面是检查学生对知识的掌握情况,另一方面也是培养学生运用知识解决实际问题的能力。】

1、本节课你有何收获?

2、教师小结:在解答实际问题前一定要先进行分析,看它们求的是哪部分面积,再选择解答的方法。求用料多少,一般采用进一法取近似值,以保证原材料够用。

【设计意图:不仅对本节课的知识要点进行回顾整理,更重要的是提醒学生在解决问题时要具体情况具体分析。】

小学数学《圆柱的表面积》教案篇十四

p13-14页例3、例4,完成“做一做”及练习二的部分习题。

1、在初步认识圆柱的基础上理解圆柱的侧面积和表面积的含义,掌握圆柱侧面积和表面积的计算方法,会正确计算圆柱的侧面积和表面积,能解决一些有关实际生活的问题。

2、培养学生良好的空间观念和解决简单的实际问题的能力。

3、通过实践操作,在学生理解圆柱侧面积和表面的含义的同时,培养学生的理解能力和探索意识。

掌握圆柱侧面积和表面积的计算方法。

:运用所学的知识解决简单的实际问题。

多媒体课件

(一)、自学反馈

1、求下面各圆柱的侧面积

(1)底面周长2.5分米,高0.6分米

(2)底面直径8厘米,高12厘米

2、求下面各圆柱的表面积

(1)底面积是40平方厘米,侧面积是25平方厘米

(2)底面半径是2分米,高是5分米

(二)、关键点拨

1、圆柱的侧面积。

(1)圆柱的侧面积,顾名思义,也就是圆柱侧面的面积。

(2)出示圆柱的展开图:这个展开后的长方形的面积和圆柱的侧面积有什么关系呢?

(3)那么,圆柱的侧面积应该怎样计算呢?(引导学生根据展开后的长方形的长和宽与圆柱底面周长和高的关系,可以知道:圆柱的侧面积=底面周长×高)

推荐访问:表面积 圆柱 小学数学 小学数学《圆柱表面积》教案(14篇) 小学数学《圆柱的表面积》教案(14篇) 人教版小学数学圆柱的表面积教案