2023年高一数学必修1课件热门6篇

时间:2023-10-08 15:20:07 来源:网友投稿

高一数学必修1课件第1篇一、目标:用五点法画函数的图象.二、重点难点:重点是用五点法列表画函数画图;难点是五点的确定.三、过程:【创设情境】在物理学中,物体做简谐运动时,位移s和时间t的关系为这里A是下面是小编为大家整理的高一数学必修1课件热门6篇,供大家参考。

高一数学必修1课件热门6篇

高一数学必修1课件 第1篇

一、目标:

用五点法画函数 的图象.

二、重点难点:

重点是用五点法列表画函数画图;

难点是五点的确定.

三、过程:

【创设情境】

在物理学中,物体做简谐运动时,位移s和时间t的关系为

这里A是物体振动时离开平衡位置的最大距离,称为振动的振幅;
往复振动一次所需的时间

称为这个振动的周期;
单位时间内往复振动的次数

称为振动的频率;

称为相位,t=0时的相位 称为初相.

在物理和工程技术的许多问题中,经常会遇到形如 的函数,今天我们来探究函数 的图象与函数 的图象关系.

【自主学习 探索研究】

1.作函数 和 的图象 (学生用五点法列表画图)

010-10

010-10

描点画图,思考上述两函数的图象五点差异.

(函数 的五点横坐标可以看作函数 的图象上五点横坐标减去 而得.纵坐标不变)

2.作函数 的图象

(学生五点法列表画图)回答函数 的图象与函数 五点差异

思考:函数 的图象与函数 的图象有什么关系?

3.作函数 和 的图象

(学生五点法列表画图)回答上述两函数的图象关系? 图象上的五点与函数 五点差异.

5.函数 的图象并与函数 的图象比较之间的关系?

6.思考函数 的五点如何确定?

7.课堂练习

(1)用五点法画函数 的图象

(2)课本p.42.练习5

【提炼总结】

1. 用五点法画三角函数图象时,要先确定周期,再将周期四等份,找出五个关键点:1, , , ,,然后再列表画图;

2.作图时,要注意坐标轴刻度,x轴是实数轴,角一律用弧度制.

四、布置作业

1.修改并保留本节课列表画图所得图象;

高一数学必修1课件 第2篇

一、教学目标

1.知识与技能

(1)通过实物操作,增强学生的直观感知。

(2)能根据几何结构特征对空间物体进行分类。

(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。

(4)会表示有关于几何体以及柱、锥、台的分类。

2.过程与方法

(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。

(2)让学生观察、讨论、归纳、概括所学的知识。

3.情感态度与价值观

(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。

(2)培养学生的空间想象能力和抽象括能力。

二、教学重点、难点

重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。

难点:柱、锥、台、球的结构特征的概括。

三、教学用具

(1)学法:观察、思考、交流、讨论、概括。

(2)实物模型、投影仪

四、教学思路

(一)创设情景,揭示课题

1.教师提出问题:在我们生活周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?引导学生回忆,举例和相互交流。教师对学生的活动及时给予评价。

2.所举的建筑物基本上都是由这些几何体组合而成的,(展示具有柱、锥、台、球结构特征的空间物体),你能通过观察。根据某种标准对这些空间物体进行分类吗?这是我们所要学习的内容。

(二)、研探新知

1.引导学生观察物体、思考、交流、讨论,对物体进行分类,分辩棱柱、圆柱、棱锥。

2.观察棱柱的几何物件以及投影出棱柱的图片,它们各自的特点是什么?它们的共同特点是什么?

3.组织学生分组讨论,每小组选出一名同学发表本组讨论结果。在此基础上得出棱柱的主要结构特征。(1)有两个面互相平行;
(2)其余各面都是平行四边形;
(3)每相邻两上四边形的公共边互相平行。概括出棱柱的概念。

4.教师与学生结合图形共同得出棱柱相关概念以及棱柱的表示。

5.提出问题:各种这样的"棱柱,主要有什么不同?可不可以根据不同对棱柱分类? 请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的?

6.以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。

7.让学生观察圆柱,并实物模型演示,如何得到圆柱,从而概括出圆标的概念以及相关的概念及圆柱的表示。

8.引导学生以类似的方法思考圆锥、圆台、球的结构特征,以及相关概念和表示,借助实物模型演示引导学生思考、讨论、概括。

9.教师指出圆柱和棱柱统称为柱体,棱台与圆台统称为台体,圆锥与棱锥统称为锥体。

10.现实世界中,我们看到的物体大多由具有柱、锥、台、球等几何结构特征的物体组合而成。请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的?

(三)质疑答辩,排难解惑,发展思维,教师提出问题,让学生思考。

1.有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱(举反例说明,如图)

2.棱柱的何两个平面都可以作为棱柱的底面吗?

3.课本P8,习题1.1 A组第1题。

4.圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转?

5.棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥呢?

四、巩固深化

练习:课本P7 练习1、2(1)(2)

课本P8 习题1.1 第2、3、4题

五、归纳整理

由学生整理学习了哪些内容

六、布置作业

课本P8 练习题1.1 B组第1题

课外练习 课本P8 习题1.1 B组第2题

高一数学必修1课件 第3篇

改进:在应用于课堂教学过程中,经过反复斟酌推敲,以更简洁的方法,结合实际,以自主探究、协作互助的方式,将原精品课程进行了相关变更,添加具体实例,并在授课过程中参阅经典算法,将之穿插于教学中,激趣导学,效果感觉更好。

一、教学内容分析

本节内容为人教版高一数学必修3模块第一章算法初步第1.1.2节第一课时,

主要包括程序框图的图形符号、算法的程序框图表示、算法的的逻辑结构等三部分内容。

算法就是解决问题的步骤,算法也是数学及其应用的重要组成部分,是计算机科学的基础,利用计算机解决问需要算法,在日常生活中做任何事情也都有算法,当然我们更关心的是计算机的算法,计算机可以解决多类信息处理问题,直接写出解决该问题的程序是困难的,因此,我们要首先研究解决问题的算法,再把算法转化为程序,所以算法设计是使用计算机解决具体问题的一个极为重要的环节。

通过对解决具体问题的过程与步骤的分析,体会算法的思想,了解算法的含义。理解程序框图的三种基本逻辑结构:顺序结构、条件结构、循环结构。进一步体会算法的另一种表达方式。

本章节的重点是体会算法的思想,通过模仿、操作、探索,通过设计程序框图解决实际生活问题的过程。通过解决具体问题,理解三种基本逻辑结构中顺序和条件结构,经历将具体问题用程序框图来表示,在实际问题中能设计相关程序框图解决实际问题。

二、学情分析

关于本节内容,相对学生来说,全是新知识,因它涉及到计算机科学相关内容,也是数学及其应用的重要组成部分。大部分学生并没有学习过程序框图的设计,在编写程序方面基本上都是“零起点”,而且认为程序框图设计是一件困难的事情,因此本课的举例和任务都适当降低难度,让学生能在实践中体会成功的喜悦,领略程序设计之算法程序框图表示的乐趣。另一方面要充分利用课外资料和实例,设置问题情景,激发学生的学习兴趣,通过建构模型,化抽象为具体,教师在整个学习过程中进行指导、启发、补充与完善。

三、教学目标

(一)知识与技能

1、通过学习程序框图的图形符号,区分不同符号所表示的不同含义,能模仿正确书写简单程序框图;

2、理解并掌握算法的三种基本逻辑结构,培养学生分析问题、解决问题的能力;

3、培养学生在实际现实生活中,能正确运用相关逻辑结构分析、解决实际问题;

(二)过程与方法

1、通过实例分析,学生经历、模仿、探索程序框图表达解决问题的算法的过程,学习程序框图的画法;

2、在具体问题的解决过程中理解程序流程图的三种基本逻辑结构之顺序结构、条件结构,寻找解决实际问题的规律与方法。

(三)情感态度与价值观

1:通过本节的学习,使学生对计算机的算法语言有一个基本的.了解,明确算法的要求,认识计算机是人类征服自然的一种有力工具,进一步提高探索、认识世界的能力。

2:培养学生迎难而上,战胜困难的大无畏精神,克服畏难情绪,培养严谨的思维习惯、塑造认真、细致的做事态度。

四、教学重点和难点

教学重点:程序框图的图形符号、算法的基本逻辑结构及应用

教学难点:算法的条件结构在实际生活中的运用

五、教学策略

1、任务驱动策略:据不同层次的学生,设置不同等级的任务,引导启发学生自己看书学习新知,从而建立新的知识结构;
如程序框图图形符号如何绘制、各表示什么意思,对一些简单问题,程序框图的画法,学生模仿、探索、学习

2、创设问题情景策略:以学生活动为中心,教师精心设计问题,引导学生讨论与交流,充分发挥学生的主体作用。例:算法的基本逻辑结构有哪些,有什么区别,具体问题时如何正确选取相应算法的逻辑结构

3、竞争机制策略:据本章节中部分内容,合理设置分组竞争,小组赛形式激发学生高涨的学习热情,不仅引导学生将所学知识应用于解决实际问题,且培养学生团队合作探究精神。

六、教学方法

任务驱动法、启发引导式、小组合作探究学习法、模仿建构学习法

七、教具准备

多媒体课件、生活中具体实例、同步学案

八、教学过程                                                   课时1

教学程序 教师组织与引导 学生活动 设计意图

发放“任务”纸质 1、把任务学案发给学生

2、查阅、收集有关实际生活中实例,用于本节教学 1、预习

2、查阅相关资料 学生是学习主体,自主合作、探究式学习

回顾旧知,引入新课

改进:生活中的问题,描述解决步骤(1)算法的描述:要交换两杯不同液体的方法、步骤;
(自然语言描述法,复习)

穿插经典算法在教学中,激趣导学

1:鸡兔同笼、2:谁在说谎

(2)你还知道有什么渠道能使算法描述得更直观、高效、准确吗?引导学生看书自学

学生思考、回答,

学生看书自学本节程序框图相关知识:程序框图图形符号

激发学生对本节课内容的关注

探究不同程序框图符号表示的不同含义,初步探讨程序框图的画法

重点部分强记 据教材设疑,并逐一提出下列问题:

(1)程序框图共有哪些图形符号?

改进:同学们,你们所常见的图形有哪些??学生回答

现在,从这些常用图形中,我们选出几中种来用于表示“算法”中的含义

(2)不同符号所表示的什么含义?

(3)具体应用,实例列举,老师在黑板上“补”画“长方形面积”流程图

(4)要求学生结合上述老师所讲实例,模仿“补充”画出,改进:

A: 圆的面积、周长的流程图(老师完成)

B: 正方形面积、周长的流程图(师生共同完成)

C: 三角形面积、周长的流程图(学生自己完成)

D:求学生语、数、英三科成绩平均分的程序框图(学生自己完成)

(5)例3.已知三角形三边长,求三角形面积的程序框图(老师提示公式,学生自己理解)

(6)判别整数n是否为质数后面学

高一数学必修1课件 第4篇

一、教学目标

1.知识与技能

(1)掌握画三视图的基本技能

(2)丰富学生的空间想象力

2.过程与方法

主要通过学生自己的亲身实践,动手作图,体会三视图的作用。

3.情感态度与价值观

(1)提高学生空间想象力

(2)体会三视图的作用

二、教学重点、难点

重点:画出简单组合体的三视图

难点:识别三视图所表示的空间几何体

三、学法与教学用具

1.学法:观察、动手实践、讨论、类比

2.教学用具:实物模型、三角板

四、教学思路

(一)创设情景,揭开课题

“横看成岭侧看成峰”,这说明从不同的角度看同一物体视觉的效果可能不同,要比较真实反映出物体,我们可从多角度观看物体,这堂课我们主要学习空间几何体的三视图。

在初中,我们已经学习了正方体、长方体、圆柱、圆锥、球的三视图(正视图、侧视图、俯视图),你能画出空间几何体的三视图吗?

(二)实践动手作图

1.讲台上放球、长方体实物,要求学生画出它们的三视图,教师巡视,学生画完后可交流结果并讨论;

2.教师引导学生用类比方法画出简单组合体的三视图

(1)画出球放在长方体上的三视图

(2)画出矿泉水瓶(实物放在桌面上)的三视图

学生画完后,可把自己的作品展示并与同学交流,总结自己的作图心得

作三视图之前应当细心观察,认识了它的基本结构特征后,再动手作图。

3.三视图与几何体之间的相互转化。

(1)投影出示图片(课本P10,图1.2-3)

请同学们思考图中的三视图表示的几何体是什么?

(2)你能画出圆台的三视图吗?

(3)三视图对于认识空间几何体有何作用?你有何体会?

教师巡视指导,解答学生在学习中遇到的困难,然后让学生发表对上述问题的看法。

4.请同学们画出1.2-4中其他物体表示的空间几何体的三视图,并与其他同学交流。

(三)巩固练习

课本P12 练习1、2 P18习题1.2 A组1

(四)归纳整理

请学生回顾发表如何作好空间几何体的三视图

(五)课外练习

1.自己动手制作一个底面是正方形,侧面是全等的三角形的棱锥模型,并画出它的三视图。

2.自己制作一个上、下底面都是相似的正三角形,侧面是全等的等腰梯形的棱台模型,并画出它的三视图。

高一数学必修1课件 第5篇

一、教学目标

1.知识与技能

(1)通过实物操作,增强学生的直观感知。

(2)能根据几何结构特征对空间物体进行分类。

(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。

(4)会表示有关于几何体以及柱、锥、台的分类。

2.过程与方法

(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。

(2)让学生观察、讨论、归纳、概括所学的知识。

3.情感态度与价值观

(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。

(2)培养学生的空间想象能力和抽象括能力。

二、教学重点、难点

重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。

难点:柱、锥、台、球的结构特征的概括。

三、教学用具

(1)学法:观察、思考、交流、讨论、概括。

(2)实物模型、投影仪

四、教学思路

(一)创设情景,揭示课题

1.教师提出问题:在我们生活周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?引导学生回忆,举例和相互交流。教师对学生的活动及时给予评价。

2.所举的建筑物基本上都是由这些几何体组合而成的,(展示具有柱、锥、台、球结构特征的空间物体),你能通过观察。根据某种标准对这些空间物体进行分类吗?这是我们所要学习的`内容。

(二)、研探新知

1.引导学生观察物体、思考、交流、讨论,对物体进行分类,分辩棱柱、圆柱、棱锥。

2.观察棱柱的几何物件以及投影出棱柱的图片,它们各自的特点是什么?它们的共同特点是什么?

3.组织学生分组讨论,每小组选出一名同学发表本组讨论结果。在此基础上得出棱柱的主要结构特征。(1)有两个面互相平行;
(2)其余各面都是平行四边形;
(3)每相邻两上四边形的公共边互相平行。概括出棱柱的概念。

4.教师与学生结合图形共同得出棱柱相关概念以及棱柱的表示。

5.提出问题:各种这样的棱柱,主要有什么不同?可不可以根据不同对棱柱分类? 请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的?

6.以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。

7.让学生观察圆柱,并实物模型演示,如何得到圆柱,从而概括出圆标的概念以及相关的概念及圆柱的表示。

8.引导学生以类似的方法思考圆锥、圆台、球的结构特征,以及相关概念和表示,借助实物模型演示引导学生思考、讨论、概括。

9.教师指出圆柱和棱柱统称为柱体,棱台与圆台统称为台体,圆锥与棱锥统称为锥体。

10.现实世界中,我们看到的物体大多由具有柱、锥、台、球等几何结构特征的物体组合而成。请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的?

(三)质疑答辩,排难解惑,发展思维,教师提出问题,让学生思考。

1.有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱(举反例说明,如图)

2.棱柱的何两个平面都可以作为棱柱的底面吗?

3.课本P8,习题1.1 A组第1题。

4.圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转?

5.棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥呢?

四、巩固深化

练习:课本P7 练习1、2(1)(2)

课本P8 习题1.1 第2、3、4题

五、归纳整理

由学生整理学习了哪些内容

六、布置作业

课本P8 练习题1.1 B组第1题

课外练习 课本P8 习题1.1 B组第2题

1.2.1 空间几何体的三视图(1课时)

高一数学必修1课件 第6篇

授课

时间 第  周   星期  第     节 课型 新授课 主备课人

学习

目标

1理解互斥事件、对立事件的定义,会判断所给事件的类型;

2.掌握互斥事件的概率加法公式并会应用。

重点难点 重点:概率的加法公式及其应用;
事件的关系与运算

难点:互斥事件与对立事件的区别与联系

学习过程与方法

自主学习

1.互斥事件:在一个随机试验中,把一次试验下___________的两个事件A与B称作互斥事件。

2.事件A+B:给定事件A,B,规定A+B为          ,事件A+B发生是指事件A和事件B________。

3.对立事件:事件“A不发生”称为A的对立事件,记作_________,对立事件也称为________,在每一次试验中,相互对立的事件A与事件 不会__________,并且一定____________.

4.互斥事件的概率加法公式:

(1)在一个随机试验中,如果随机事件A和事件B是互斥事件,那么有P(A+B)=_________.

(2)如果随机事件 中任意两个是互斥事件,那么有 ____________。

5.对立事件的概率运算:
_____________。

探索新知:

1.如何从集合的角度理解互斥事件?

2.互斥事件与对立事件有何异同?

3.对于任意两个事件A,B,P(A+B)=P(B)+P(B)是否一定成立?

4.某战士在一次射击训练中,击中环数大于6的概率为0.6,击中环数是6或7或8的概率为0.3,则该战士击中环数大于5的概率为0.6+0.3=0.9,对吗?

5.什么情况下考虑用对立事件求概率呢?

6.阅读p143 例3和p144例4,你的问题是什么?

精讲互动

例1.判断下列给出的每对事件是否为互斥事件,是否为对立事件,并说明理由。

从40张扑克牌(红桃、黑桃、方块、梅花点数从1~10各10张)中,任取一张。

(1)“抽出红桃”与“抽出黑桃”;

(2)“抽出红色牌”与“抽出黑色牌”;

(3)“抽出的牌点数为5的倍数”与“抽出的牌点数大于9”。

例2 . 解读课本例5和例6

达标训练

1.课本p147 练习1 2 3 4

2.(选做)一盒中装有各色球12个,其中5个红球、,4个黑球、2个白球、1个绿球。从中随机取出1球,求:

(1) 取出1球是红球或黑球的概率;

(2)取出1球是红球或黑球或白球的概率。

推荐访问:高一 必修 课件 高一数学必修1课件热门6篇 高一数学必修1课件(热门6篇) 高一必修一数学课件全套