把握折叠实质,感悟数形结合

时间:2023-11-07 12:21:02 来源:网友投稿

龚平

考点提炼

考点1 如图1,在菱形纸片ABCD中,E是BC边上一点,将△ABE沿直线AE翻折,使点B落在B′处,连接DB′. 已知∠C = 120°,∠BAE = 50°,则∠AB′D的度数为( ).

A. 50°    B. 60°

C. 80°    D. 90°

解题思路:由折叠的性质知∠BAE = ∠B′AE = 50°,AB′ = AB,则∠BAB′ = 100°,由菱形的性质得∠BAD = 120°,AB = AD,则∠DAB′ = 20°,AB′ =  AD,利用三角形内角和定理可得∠AB′D = 80°. 故选C.

解题要点:折叠具有全等性,折叠前后图形的形状和大小不变,对应边相等,对应角相等.

考点2 如图2,将正方形纸片ABCD沿MN折叠,使点D落在边AB上,对应点为D′,点C落在C′处. 若AB = 6,AD′ = 2,则折痕MN的长为 .

解题思路:如图2,过点N作NE⊥AD,垂足为点E,连接DD′. 易证明△NEM ≌ △DAD′,则MN = DD′,利用勾股定理求出DD′的长, 即可得到折痕MN的长为[210].

解题要点:
折叠具有对称性,折痕垂直平分对应点所连线段.

考点3 如图3,将矩形纸片ABCD沿CE折叠,使点B落在边AD上的点F处. 若点E在边AB上,AB = 4,BC = 5,则AE = .

解题思路:方法1:由折叠性质可得CF = BC = 5,BE = EF,由矩形性质得CD = AB = 4,BC = AD = 5. 在Rt△CDF中,由勾股定理得出DF = 3,进而得出AF = 2. 在Rt△AEF中,设AE = x,利用勾股定理建立方程求解,即可得到AE的长为[32].

方法2:由折叠性质可得CF = BC = 5,BE = EF,由矩形性质得CD = AB = 4,BC = AD = 5. 在Rt△CDF中,由勾股定理得出DF = 3,进而得出AF = 2. 利用△AEF∽△DFC,即可得到AE的长为[32].

解题要点:在解决折叠中的线段计算问题时,应关注方程思想,运用勾股定理、解直角三角形、相似等知识建立方程求解.

真题精讲

例1 (2022·辽宁·抚顺·本溪·辽阳)如图4,正方形ABCD的边长为10,点G是边CD的中点,点E是边AD上一动点,连接BE,将△ABE沿BE翻折得到△FBE,连接GF,当GF最小时,则AE的长是 .

解析:
由折叠的性质可知,BF = BA = 10,则点F在以点B为圆心,10为半径的圆上运动,如图5,当点G,F,B三点共线时,GF最小.

方法1:在Rt△CBG中,由勾股定理可以求出BG = [55],则FG = [55] - 10. 设AE = EF = x,则DE = 10 - x,在Rt△DEG与Rt△FEG中,利用勾股定理建立方程,即可得到AE的长为[55] - 5.

方法2:在Rt△CBG中,由勾股定理可以求出BG = [55]. 设AE = EF = x,利用等面积法 S梯形ABGD = S△EDG + S△ABE + S△EBG,建立方程,即可得到AE的长为[55] - 5.

点评:确定当点G,F,B三点共线时,GF最小是解题的关键.

例2 (2022·辽宁·沈阳)如图6,将矩形纸片ABCD折叠,折痕为MN,点M,N分别在边AD,BC上,点C,D的对应点分别为点E, F,且点F在矩形内部,MF的延长线交边BC于点G,EF交边BC于点H,EN = 2,AB = 4. 当点H为GN的三等分点时,则MD的长为 .

解析:如图7,过点G作GP⊥AD于点P, 则PG = AB = 4. 根据折叠的性质和平行线的性质可知∠GMN = ∠MNG,则MG = NG. 根据折叠的性质和矩形的性质可以证明△FGH∽△ENH.

由点H为GN的三等分点,分情况讨论.

当HN = 2GH时, 如图7,由△FGH∽△ENH可知FG = 1. 设MD = MF = x,则MG = GN = x + 1,∴PM = 3,在Rt△PGM中,根据勾股定理列方程可以求出MD = 4. 当GH = 2HN时, 如图8,由△FGH∽△ENH可知FG = 4.  设MD = MF = x,则MG = GN = x + 4,∴PM = 6,在Rt△PGM中,根据勾股定理列方程可以求出MD = [213] - 4.

綜上,MD的长为4或2[13] - 4.

点评:解涉及三等分点的问题时,一定注意要分类讨论.

勤于积累

(1)折叠问题通常会产生以折痕为底的等腰三角形. 如图9,△AEC是等腰三角形.

(2)解决问题时,要善于挖掘隐含条件,出现双中点时可以使用中位线定理,实现位置关系与数量关系的双迁移.

(3)关注方程思想,利用折叠所得到的直角和相等的边或角,根据题意选择一条适当的线段设为x,根据折叠的性质用含x的代数式表示其他线段的长度,然后运用勾股定理、三角函数、相似列出方程求解.

(4)在处理平面几何的许多问题时,常需要借助于圆的性质,而我们需要的圆往往并不存在,这就需要利用已知条件,借助图形把所需的圆找出来. 在解决折叠问题时,如果折痕是可变化的并且经过某个定点,那么折叠后关键点的位置也是可变的,此时就需要利用等线段画圆,从而迅速确定好关键点的位置,作出正确图形,进而求解.

专题精练

1. 如图10,在Rt△ABC纸片中,∠ACB = 90°,D是斜边AB的中点,把纸片沿着CD折叠,使点B落到点E的位置,连接AE. 若AE[⫽]DC,∠B = α,则∠EAC等于( ).

A. α B. 90° - α

C. [12]α D. 90° - 2α

2.如图11,正方形ABCD的边长为3,E为BC边上一点,BE = 1. 将正方形沿GF折叠,使点A恰好与点E重合,连接AF,EF,GE,则四边形AGEF的面积为( ).

A. [210] B. [25] C. 6 D. 5

3. 如图12,在矩形ABCD中,AB = 5,BC = 6,点M,N分别在AD,BC上,且AM = [13]AD,BN = [13]BC,E为直线BC上一动点,连接DE,将△DCE沿DE所在直线翻折得到△DC′E,当点C′恰好落在直线MN上时,CE的长为 .

参考答案:1. B 2.  D 3.  [52]或10

(作者单位:沈阳市第一三四中学)

猜你喜欢折痕勾股定理纸片勾股定理紧握折叠的手中学生数理化·七年级数学人教版(2022年3期)2022-03-16用勾股定理解一类题中学生数理化·七年级数学人教版(2022年3期)2022-03-16《纺织品织物折痕回复角的测定》正式发布纺织科学研究(2021年7期)2021-12-02应用勾股定理的几个层次中学生数理化·七年级数学人教版(2021年3期)2021-07-22听话的纸片童话世界(2020年26期)2020-10-27《勾股定理》拓展精练语数外学习·初中版(2020年2期)2020-09-10纸片也能托住水东方少年·布老虎画刊(2020年4期)2020-06-08折痕青春(2017年5期)2017-05-22双舱船小学阅读指南·低年级版(2016年2期)2016-09-10猫小学阅读指南·低年级版(2016年4期)2016-05-14

推荐访问:折叠 实质 感悟