刘涛 马楠 金吉芬 彭志军 李兴忠 汪得凯
摘 要:
為探讨黑老虎(Kadsura coccinea)根际土壤和组织内生真菌菌群的组成及其生态功能,该研究采用ITS高通量测序技术对成熟黑老虎(根、茎、叶)内生真菌及根际土壤真菌群落结构、多样性和生态功能进行了分析。结果表明:(1)从12个样品中共获得2 241个可操作分类单元(OTU),涉及10门、41纲、95目、212科、367属,内生真菌(根、茎、叶)和根际土壤真菌OTU数分别为386、536、258、1 435个,其中共有的OTU为18个。在门水平上,黑老虎内生真菌及根际土壤真菌优势群落均为子囊菌门和担子菌门,其中子囊菌门在叶和茎中占比分别高达96.99%和95.37%;
在属水平上,黑老虎根际土壤真菌中腐生真菌被孢霉属占比较高(为13.5%),叶和茎等生长旺盛的组织中子囊菌门未分类属和痂囊腔菌属占比较高。(2)α多样性分析结果显示,黑老虎根际土壤真菌群落的丰度和多样性明显高于内生真菌,茎中内生真菌丰度显著高于根和叶,而根、茎和叶组织间内生真菌多样性差异不显著;
PCoA分析结果显示,叶和茎的真菌群落结构相似性更高。(3)利用FUNGuild数据库进行的功能预测分析结果显示,黑老虎根际土壤真菌和内生真菌含有大量的未分类菌群;
功能已分类菌群中,病理寄生型功能群在生长旺盛的组织中占比较高。该研究结果为黑老虎优异功能菌的筛选和发掘提供了理论依据。
关键词:
黑老虎, 高通量测序, ITS, 内生真菌, 根际土壤真菌, 多样性, FUNGuild
中图分类号:
Q945.8 文献标识码:
A 文章编号:
1000-3142(2023)05-0869-11
Abstract:
To investigate rhizosphere soil and endophytic fungal community structure, diversity, and ecological function in Kadsura coccinea, the endophytic fungal communities from roots, stems, leaves, and rhizosphere soils of mature K. coccinea were analyzed based on ITS high-throughput sequencing technology. The results were as follows:(1) A total of 2 241 operational taxonomic units (OTUs) were obtained from 12 samples at 97% of sequence homology level. The OTUs of endophytic (root, stem and leaf) and rhizosphere soil fungi were 386, 536, 258 and 1 435, respectively, of which 18 OTUs were in common. They belonged to 10 phyla, 41 classes, 95 orders, 212 families and 367 genera. The dominant fungal communities at the phylum level in the endophytic and rhizosphere soil of K. coccinea were Ascomycota and Basidiomycota. Among them, Ascomycota accounted for 96.99% and 95.37% of the endophytic fungal community in leaves and stems, respectively. At the genus level, the saprophytic fungi Mortierella accounted for a relatively high proportion (13.5%) in the rhizosphere soil. In contrast, pathogenic fungi such as Ascomycota_unclassified and Elsinoe were mainly found in vigorously growing tissues (leaves and stems). (2) Alpha diversity analysis showed that the richness and diversity of the fungal community in the rhizosphere soil of K. coccinea were significantly higher than those in endophytic fungi. Although the abundance of endophytic fungi in stems was significantly higher than that in roots and leaves, the differences in endophytic fungal diversity among roots, stems and leaves were not significant. The principal component analysis (PCoA) revealed that the fungal community structures of leaves and stems were more similar, and those of roots and rhizosphere soils were more similar. (3) The function of fungal communities in different tissues and rhizosphere soils of K. coccinea was predicted and analyzed by using FUNGuild platform. The results showed that the rhizosphere soil fungi and endophytic fungi contained a large number of unclassified fungi. Among the functionally classified fungi, the pathotroph functional group had a higher proportion in the vigorously growing tissues. This study provides a theoretical basis for the screening and exploring of active functional fungi in K. coccinea.
Key words:
Kadsura coccinea, high-throughput sequencing, ITS, endophytic fungi, rhizosphere soil fungi, diversity, FUNGuild
黑老虎(Kadsura coccinea),别名冷饭团、臭饭团、布福娜等,是木兰科南五味子属植物(林祁和杨志荣,2007),主要分布于我国湖南、贵州、云南、福建、广西、四川、江西等地(曾建飞,1996),以根、茎入药,具有行气活血、消肿止痛等功效(Wang et al., 2012)。现代药理学研究表明,黑老虎提取物具有抗氧化、抗衰老、抗病毒、保肝护肝及抗癌等功能(Sun et al., 2009;
Zhao et al., 2014;
Zhao et al., 2021)。黑老虎果实富含木脂素、氨基酸、花青素等活性物质(舒永志等,2012;
赵林峰和梁忠厚,2019),已作为一种新兴水果逐渐为人们所熟知,在贵州黔东南、湖南通道及湖北恩施等地作为脱贫致富产业得以推广(刘涛等,2009;
高渐飞等,2022)。
植物内生菌分布于植物组织表面或器官内部,与寄主植物长期依存并协同进化(Rodriguez et al., 2009;
Porras-Alfaro & Bayman, 2011)。植物内生真菌可以促进植物的生长发育、抵御非生物胁迫、增加宿主的抗病性,部分药用植物内生真菌可产生与寄主类似的次生代谢物,广泛应用于医学、农学、工业及生物技术等领域(Khan et al., 2012;
Liu et al., 2018;
Juri c' et al., 2020)。目前,药用植物内生菌研究较多,如杜仲(杨娟等,2019)、重楼(王艳等,2019)、掌叶大黄(Chen et al., 2021)、黄精(樊锐锋等,2021)等。有研究表明,五味子科植物中含有丰富的内生真菌,已分离的内生菌具有抗氧化(赵玥等,2015)、拮抗植物病原菌(潘争艳等,2007;
张誉荠等,2021)和抑制病原菌(张誉荠等,2020)、抑制肿瘤细胞生长(Song et al., 2021)等功能。从五味子科植物中陆续分离了一些能够产生木质素类或转化宿主主要次生代谢物黑五味子酸的内生真菌(Wang et al., 2017;
毛瑞华和窦智,2019;
Qin et al., 2019, 2020)。然而,五味子科植物长期种植会导致土壤菌群发生变化。江林春等(2020)用高通量测序方法分析了未种植华中五味子(CK)与种植3 a(Y3)、6 a(Y6)后根际土壤化学性质和真菌群落变化规律,发现华中五味子种植6 a后根际土壤养分状况和土壤真菌群落发生了明显改变。这为五味子属植物内生真菌及根际真菌的研究提供了重要信息,但对黑老虎内生真菌和根际真菌的研究报道还很少。
鉴于黑老虎内生真菌和根际真菌的研究现状,本研究采用Illumina高通量测序方法,以多年生成熟的黑老虎为对象,通过分析黑老虎内生真菌及根际土壤真菌的真菌群落组成、多样性和功能预测,探讨以下问题:(1)黑老虎植株内生真菌和根际土壤真菌的群落组成差异和优势菌群;
(2)黑老虎内生真菌和根际真菌功能差异及形成原因。本研究为黑老虎内生真菌和根际真菌菌群的发掘和代謝活性产物的进一步研究提供了理论依据。
1 材料与方法
1.1 样品处理
黑老虎根际土、根、茎和叶均采自贵州省果树科学研究所试验基地,品种资源编号为GZ1,已种植5 a以上。2021年11月采收黑老虎果实后,选取长势一致、发育良好的成熟根、茎和叶,每3株混合作为1个处理,重复3次。根部带土,置于冷链箱内,迅速带回实验室,将根部土壤抖落,留存无法抖落的为根际土壤,将根际土壤收集于无菌PE管中,根样品标记为RT1、RT2和RT3,茎样品标记为ST1、ST2和ST3,叶样品标记为LF1、LF2和LF3,根际土样品标记为Rh1、Rh2和Rh3。根和根际土样品的制备参照王艳等(2019)的方法,将黑老虎根、茎和叶用流动的自来水冲去表面多余的根际土后,先分别置于75%乙醇中处理2 min,再用5%次氯酸处理3 min,最后用无菌水清洗3次,最终获得表面无菌的黑老虎根、茎和叶样品,由于难以从黑老虎肉质叶片中提取DNA,因此将表面灭菌的叶片放入无菌小网袋中,先置于变色硅胶中干燥24 h,再置于液氮中速冻用于后续DNA提取。
1.2 ITS文库构建及高通量测序
根、茎和叶组织样品经液氮研磨后,用植物基因组DNA试剂盒(天根生化科技有限公司,货号:DP305)提取总DNA, 根际土样品用液氮研磨后提取土壤微生物DNA,使用FastDNA SPIN Kit for Soil 试剂盒( MP Biomedicals,LLC,Ail,Ohio,货号:116560200),提取步骤按照试剂盒说明书进行。ITS扩增子采用通用引物fITS7/ITS4(ITS2区)进行PCR扩增,所用的引物序列为fITS7(5′-GTGARTCATCGARTCTTTG-3′),ITS4(5′- TCCTCC
GCTTATTGATATGC-3′),PCR产物经2%琼脂糖凝胶电泳检测,扩增体系为25 μL,含2 × Phanta Max Master Mix(南京诺唯赞生物科技股份有限公司,货号:P515-01)12.5 μL,正向引物fITS7(1 μmol·L-1)和反向引物 ITS4(1 μmol·L-1)各2.5 μL,模板DNA 50 ng。
PCR程序:
95 ℃预变性5 min;
95 ℃变性30 s, 50 ℃退火30 s, 72 ℃延伸40 s,30个循环;
72 ℃延伸7 min。PCR产物经2%琼脂糖凝胶电泳确证,PCR产物回收纯化后,利用Illumina Mi Seq PE300平台上机测序(杭州联川生物科技公司,杭州)。
1.3 数据处理和分析
测序获得的原始数据去除接头序列后,使用FLASH V1.2.7软件进行拼接,利用Trimmomatic V0.33软件过滤低质量的测序碱基,利用Vsearch V2.3.4软件过滤掉嵌合的reads获得高质量的数据后,使用UPARSE软件(http://drive5.com/uparse/)在97%的相似水平下聚类生成OTU并进行注释。利用QIIME 2软件进行α、β多样性分析(Bolyen et al., 2019)。方差分析和多重比较采用SPSS 26.0软件进行。绘图用R V3.5.2软件完成。内生真菌的生态功能利用FUNGuild平台进行分析(Nguyen et al., 2016)。
2 结果与分析
2.1 内生真菌和根际土壤真菌群落测序数据统计
对黑老虎的3个不同组织及根际土共计12个样品进行ITS高通量测序,共测得1 023 870对读长(reads),原始下机数据经双端拼接、质量控制、嵌合体过滤后,进行高质量数据统计,共获得988 991对有效reads,样品有效reads为78 302~84 135對,每个样品平均82 416对reads,有效率在94.79%~98.40%之间,Q20全部为98.98%及以上(表1),表明测序质量评价各项指标均符合ITS测序要求。内生真菌及根际土样本的稀释曲线均表现为先急剧上升,之后随着测序条数的增加曲线趋于平缓,文库的覆盖度均在99.9%以上(图1),表明各样品物种测序量趋于饱和,测序结果可以充分覆盖样品的物种。另外,从样品稀释曲线来看,根际土壤真菌丰度远大于内生真菌,提示根际土壤真菌多样性可能比内生真菌更高。
2.2 内生真菌和根际土壤真菌群落OTU分析
经过分析和聚类,从12个样品中共得到2 241个OTU,其中从根际土壤样品中检测到1 435个,从根、茎和叶3个组织样品中分别检测到386、536、258个。通过韦恩图分析发现,根际土壤真菌和内生真菌群落中共有的OTU数量为18个,其中根际土中拥有较多独立的OTU(为1 192个),而根、茎和叶组织中独立的OTU数分别为151、383、112个。根际土和根中共有的OTU数量为195个,根际土与茎、叶共有OTU分别为65、52个,根、茎和叶3个组织共有OTU为40个(图2)。图2结果表明,尽管所检测的OTU数量较多,但根际土和各组织间共有的OTU只有18个,占比仅0.8%,根际土壤真菌、组织内生真菌中形成了相对独立的真菌群落。根际土壤与根共有的OTU占比相对较高(8.8%),提示黑老虎根长期生活在土壤中,可能与根际富集的真菌形成一定的互作关系,真菌群落之间产生相互影响。
2.3 内生真菌和根际真菌的群落结构组成
进一步将OTU的代表序列在门和属水平上进行群落组成分析。在门水平上,根际土壤真菌和内生真菌的优势群落均为子囊菌门(Ascomycota)和担子菌门(Basidiomycota),其中子囊菌门占绝对优势,根际土和根占比分别为57.26%和58.76%,而叶和茎占比分别高达96.99%和95.37%。此外,根中优势菌门为担子菌门和球囊菌门(Glomeromycota),分别占比为21.03%和17.96%,球囊菌门在茎、叶组织和根际土中分别占比为0.044%、0.004%和0.670%。接合菌门(Zygomycota)在根际土中占比为13.84%,在其他植物组织中占比为0.03%~1.31%(图3:A)。未分类的OTU门在根际土中占比为13.66%,在植物组织中占比为0.19%~0.93%。
在属水平上,黑老虎内生真菌和根际土壤真菌主要分布于367属。其中,根际土壤真菌相对含量前5的有未分类真菌(Fungi_unclassified,13.7%)、被孢霉属(Mortierella,13.5%)、小不整球壳(Plectosphaerella,6.0%)、锥囊菌属(Subulicystidium,4.5%)和新丛赤壳属(Neonectria,4.3%);
根中占比前5的属有蜡壳耳目未分类属(Sebacinales_unclassified,19.7%)、外瓶霉属(Exophiala,15.2%)、球囊菌门未分类属(Glomeromycota_unclassified,12.1%)、刺盾炱目未分类属(Chaetothyriales_unclassified,8.8%)和镰刀菌属(Fusarium,8.0%);
茎中占比前5的属为子囊菌门未分类属(Ascomycota_unclassified,17.7%)、格孢腔菌目未分类属(Pleosporales_unclassified,16.3%)、痂囊腔菌科未分类属(Elsinoaceae_unclassified,11.8%)、横断孢属(Strelitziana,9.1%)和Trichomeriaceae未分类属(Trichomeriaceae_unclassified,8.6%);
叶中痂囊腔菌属(Elsinoe,21.5%)、球腔菌属(Mycosphaerella,18.2%)、球座菌属(Guignardia,14.2%)、间座壳属(Diaporthe,6.9%)、瓶霉菌属(Phialophora,5.4%)相对含量位于前5。这表明黑老虎根内生真菌及根际土真菌群落存在组织特异性,黑老虎根际真菌和内生真菌分别有特异的属,根际土壤真菌和内生真菌菌群结构存在多样性(图3:B)。对黑老虎根际真菌和内生真菌测序所得的OTU结果在属水平上进行分类及相对丰度信息绘制热图(heat map)进行分析,对根际真菌和内生真菌在门和属水平上前30的物种进行聚类分析,在门水平上,茎和叶可以聚为一类(图4:A)。在属水平上,根际土与根聚为一类,茎和叶聚为一类(图4:B)。结果显示黑老虎根样品和根际土样品的真菌群落结构更相似,根际土壤真菌和根内生真菌群落之间可能存在相互影响,而茎和叶的内生真菌群落来源相近或可能存在相互作用。
2.4 内生真菌和根际土壤真菌群落的多样性分析
ACE指数及Chao1指数反映物种丰度,Shannon指数和Simpson指数主要反映物种的多样性。由表2可知,黑老虎根际土壤真菌群落丰度和多样性显著高于内生真菌,与内生真菌相比,根际土壤真菌群落的ACE指数、Chao1指数和Shannon指数均显著高于内生真菌(P<0.05)。根、叶和茎的ACE指数及Chao1指数无显著差异(P>0.05),而茎与叶的ACE指数及Chao1指数有显著差异(P<0.05)。以上结果表明根际土壤真菌的丰度和多样性高于内生真菌,茎中内生真菌的丰度显著高于叶,根、茎和叶各组织间的多样性差异不显著。
为分析黑老虎根际土壤真菌群落和内生真菌群落之间的物种差异性,利用主坐标(principal coordinates analysis,PCoA)分析了黑老虎内生真菌和根际土壤真菌的结构情况,基于非加权距离矩阵(unweighted distance matrix),图5结果显示,第一主轴解释了OTU水平真菌群落结构变化的32.44%,第二主轴解释了OTU水平真菌群落结构变化的16.11%,两个主轴合计解释了48.55%真菌群落结构变化。PCoA分析结果显示,在根际土壤和3种组织中,不同组织样品间明显分开,叶样品与茎样品相对聚集,而叶样品与茎样品真菌群落相似度较高,可能来自相同的起源。虽然根和根际土壤长期接触,但从主坐标分析来看,根内生菌与根际土壤真菌的距离仍然较远,表明两者真菌菌群来源并不相同。
2.5 内生真菌及根际土壤真菌群落的FUNGuild功能类群预测
利用FUNGuild数据库对黑老虎内生真菌及根际土壤真菌群落进行功能预测分析,结果发现未分类菌落(unassigned)在根际土、根、茎中占比较高,分别为31.5%、37.3%和35.8%;
而病理寄生型(pathotroph)功能群在黑老虎组织和根际土壤中所占比例次序为叶(62.9%)>茎(37.5%)>根际土(16.7%)>根(9.2%),表明病理寄生型功能群在生长旺盛的组织中占比较高。根际土壤中,其他营养类型如腐生型(saprotroph,10.2%)、病理寄生-腐生-共生型(pathotroph-saprotroph-symbiotroph,12.7%)、腐生-共生型 (saprotroph-symbiotroph,13.9%)在根際土中占比超过10%;
而根中超过10%的功能菌群有腐生-共生型(saprotroph-symbiotroph,17.8%)和病理寄生-腐生型(pathotroph-saprotroph,17.2%), 茎和叶中超过10%的功能菌群分别为共生型(symbiotroph,13.7%)和病理寄生-共生型(pathotroph-symbiotroph,10.7%)(图6:A)。
对各样品中超过1%的菌群进行详细的物种生态功能预测分类,除未分类菌落(unassigned)占一定比例外,黑老虎内生真菌和根际真菌已鉴定出的主要生态功能菌为植物病原菌(plant pathogen),在根际土、根、茎和叶中占比分别为15.4%、9.1%、37.5%和62.9%(图6:B)。在超过10%的生态功能菌群中,根际土真菌为内生菌-枯枝腐生型-土壤腐生型-未定义腐生型(endophyte-litter saprotroph-soil saprotroph-undefined saprotroph,13.6%) ,根中为动物病原菌-真菌寄生虫-未定义腐生型(animal pathogen-fungal parasite-undefined saprotroph,17.1%)和丛枝菌根(arbuscular mycorrhizal,17.0%)两种,茎和叶中无其他类型的功能菌群占比超过10.0%。
3 讨论与结论
在漫长的自然进化中,真菌与其宿主植物形成复杂的相互作用关系,真菌对植物的生长发育、抵御病原菌和外部非生物胁迫发挥了重要作用,同时部分内生真菌可以产生与宿主相同的次生代谢产物。由于传统分离技术难以获得不可培养的内生真菌,因此限制了内生真菌的进一步发掘。本研究利用高通量测序技术对黑老虎内生真菌和根际土壤真菌的群落组成和多样性进行研究,发现了大量未分类的OTU:其一,表明与传统分离培养方法相比,利用高通量测序技术可以发现更多的内生真菌;
其二,表明黑老虎内生真菌和根际土壤真菌中存在大量未分类的真菌群落,可能受限于真菌数据库限制,无法对这些真菌群落进行功能分类;
其三,很多未被发掘的真菌群落可能难以进行人工分离培养,需要通过改良分离培养技术进一步发掘内生真菌。
Fuchs等(2017)研究表明,内生真菌的组成和结构受种属、环境、组织等因素影响。从真菌群落结构组成结果来看,黑老虎根际土、根、茎和叶中真菌群落结构存在较大差异。在门水平上,黑老虎内生真菌及根际真菌的优势群落均为子囊菌门和担子菌门,但子囊菌门在叶和茎中占比超过90%,在已经发现的植物内生真菌中,优势菌门多为子囊菌门,子囊菌门在不同组织中占比不同,可能与种属特异性有关。在属水平上,根际土壤真菌群落中被孢霉属占比较高(13.5%),被孢霉属为腐生真菌,在秸秆分解和土壤养分转化中发挥重要作用(宁琪等,2022)。子囊菌门未分类属和痂囊腔菌属主要为植物致病菌,在叶片和茎秆等生长旺盛的组织中占比较高。通过聚类热图分析,黑老虎根样品和根际土样品的真菌群落结构更相似,而茎和叶样品的真菌群落结构相近。土壤蕴含着丰富的微生物多样性,根与土壤长期直接接触,土壤真菌与根内生真菌相互影响,可能是造成真菌群落结构更为相近的原因(Ren et al., 2019)。叶片和茎秆与土壤接触较少且发育来源更为相似,可能是两者内生真菌结构更为类似的原因。
对黑老虎内生真菌和根际土壤真菌群落进行多样性分析,发现内生真菌和根际土壤真菌群落存在丰富的多样性,其中根际真菌群落的丰度和多样性显著高于各组织的内生真菌,研究结果与很多药用植物的根际真菌和组织内生真菌类似。王艳等(2019)研究发现,重楼根际及内生真菌多样性的关系为根际土>根茎>根;
周婕等(2019)研究发现,紫茎泽兰根、茎、鲜叶、腐叶之间内生真菌群落组成差异明显, 具有组织特异性,根际土壤与根内生真菌群落组成存在一定程度的相似。
黑老虎是传统中药材,根、茎等药用部位富含木脂素类、三萜类、花色苷等药用成分(舒永志等,2012),果实中富含酚酸、黄酮、氨基酸(Yang et al., 2020)。从黑老虎中分离的内生真菌报道较少,而从五味子科药材中分离到一些具有抗氧化、拮抗植物病原菌、转化次级代谢物等功能的内生菌,从已报道的五味子科中分离的内生菌来看,主要有二形伞形属 (Umbelopsis)和青霉属(Penicillium)真菌等A. 营养型分类;
B. Guild详细分类。
(Wang et al., 2017; 毛瑞华和窦智,2019;
Qin et al., 2019;
Song et al., 2021),这几个真菌属在本研究的组织中均有检出,表明黑老虎与五味子同科植物中的内生真菌群落具有一定程度的相似性,可以借鉴五味子科内生真菌信息,发掘黑老虎中与次生代谢有关的内生真菌。
本研究FUNGuild功能预测结果显示,叶中未知功能群占比相对较少,根际土、根和茎中未知真菌菌群较多,表明黑老虎根际土和根、茎组织中有大量未知的功能菌群,还有待进一步发掘。黑老虎根际土和组织中,病理寄生型(pathotroph)功能群较高,可能是因为黑老虎为常绿植物,叶和茎常年接触外界空气,此外茎和叶组织中营养物质含量较高,可能是造成病理寄生型真菌占比较高的原因,这与谯利军等(2018)报道的茎和叶组织病理寄生型功能群较高一致。根际土壤中,腐生型(saprotroph,10.2%)、病理寄生-腐生-共生型(pathotroph-saprotroph-symbiotroph,12.7%)、腐生-共生型(saprotroph-symbiotroph,13.9%)这3种类型功能菌群超过10%,腐生型功能菌群占比较高可能是因为根际土壤中腐生真菌的种类繁多,根际土中存在腐生型功能菌群的机会更多(宁琪等,2021)。腐生真菌可以产生一系列水解酶和氧化酶,有助于碳水化合物的分解,与有机物分解和养分循环密切相关 (梁元存等,2003) 。根中超过10%的功能菌群有腐生-共生型(saprotroph-symbiotroph,17.8%)和病理寄生-腐生型(pathotroph-saprotroph,17.2%)两种,可能是根與土壤长期密切接触,腐生真菌进入根内成为内生真菌的机会更多(周婕等,2019)。茎和叶中的优势功能类群分布不同,可能是植物内生真菌在不同组织中发挥了不同功能。随着真菌功能的进一步发掘,黑老虎内生真菌和根际土真菌的功能将会进一步明确。
参考文献:
BOLYEN E, RIDEOUT JR, DILLON MR, et al., 2019. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2 [J]. Nat Biotechnol, 37(8):
852-857.
CHEN DW, JIA YL, HOU QZ, et al., 2021. Analysis of endophyte diversity of Rheum palmatum from different production areas in Gansu Province of China and the association with secondary metabolite [J]. Microorganisms, 9(5):
978.
FAN RF, WANG RF, DU YQ, et al., 2021. Community composition and ecological function of rhizosphere fungi and medicinal parts endophytic fungi in Polygonatum sibiricum [J]. Guihaia, 41(5):
799-807. [樊锐锋, 王若凡, 杜艳秋, 等, 2021. 黄精根际及药用部位内生真菌群落组成和生态功能分析 [J]. 广西植物, 41(5):
799-807.]
FUCHS B, KRISCHKE M, MUELLER MJ, et al., 2017. Plant age and seasonal timing determine endophyte growth and alkaloid biosynthesis [J]. Fungal Ecol, 29:
52-58.
GAO JF, ZHOU W, LIU N, 2022. Differential analysis of phenolic acids from different parts of Kadsura coccinea [J]. J Chin Med Mat, 45(2):
351-358. [高渐飞, 周玮, 刘妮, 2022. 黑老虎不同部位酚酸类成分差异分析 [J]. 中药材, 45(2):
351-358.]
JIANG LC, WEI JM, BAI SS, et al., 2020. Characteristics of rhizosphere soil fungi community of Schisandra sphenanthera Rehd. Et Wils. [J]. J Yanan Univ (Nat Sci Ed), 39(4):
15-20. [江林春, 韦洁敏, 白尚尚, 等, 2020. 华中五味子根际土壤真菌群落特征研究 [J] . 延安大学学报 (自然科学版), 39(4):
15-20.]
JURI C' S, STRACENSKI KS, KRL-KILI N' SKA Z·, et al., 2020. The enhancement of plant secondary metabolites content in Lactuca sativa L. by encapsulated bioactive agents [J]. Sci Rep, 10(1):
3737.
KHAN AL, HAMAYUN M, KANG SM, et al., 2012. Endophytic fungal association via gibberellins and indole acetic acid can improve plant growth under abiotic stress:
an example of Paecilomyces formosus LHL10 [J]. BMC Microbiol, 12:
3.
LIANG YC, LIU YR, WANG YJ, et al., 2003. Pathogenicity differentiation of Phytophthora parasitica and the disease resistance difference of tobacco against black shank [J]. Acta Phytophy Sin, 30(2):
143-147. [梁元存, 劉延荣, 王玉军, 等, 2003. 烟草黑胫病菌致病性分化和烟草品种的抗病性差异 [J]. 植物保护学报, 30(2):
143-147.]
LIN Q, YANG ZR, 2007. A preliminary revision of taxonomic system of Schisandra (Schisandraceae) [J]. Bull Bot Res, 27(1):
6-15. [林祁, 杨志荣, 2007. 五味子属( 五味子科) 分类系统的初步修订 [J]. 植物研究, 27(1):
6-15.]
LIU T, WEI Q, WU XB, et al., 2009. Research status and development and utilization prospect of wild fruit species Kadsura coccinea (Lem.) A.C.Smith [J]. J Anhui Agric Sci, 37(23):
10971-10972. [刘涛, 韦茜, 吴小波, 等, 2009. 野生水果黑老虎的研究现状及开发利用前景 [J]. 安徽农业科学, 37(23):
10971-10972.]
LIU YB, YANG YP, TASNEEM S, et al., 2018. Lignans from Tujia ethnomedicine heilaohu:
chemical characterization and evaluation of their cytotoxicity and antioxidant activities [J]. Molecules, 23(9):
2147.
MAO RH, DOU Z, 2019. Chemical constituents of the fermentation broth of the endophytic fungi from fibrous roots of the Schisandra glaucescens Diels [J]. World Latest Med Inf (Electron Ver), 19(76):
221-222. [毛瑞华, 窦智, 2019. 金山五味子须根部位内生真菌FR-1次生代谢产物研究 [J]. 世界最新医学信息文摘, 19(76):
221-222.]
NGUYEN NH, SONG ZW, BSTES ST, et al., 2016. FUNGuild:
an open annotation tool for parsing fungal community datasets by ecological guild [J]. Fungal Ecol, 20:
241-248.
NING Q, CHEN L, LI F, et al., 2022. Effects of Mortierella on nutrient availability and straw decomposition in soil [J]. Acta Pedol Sin, 59(1):
206-217. [宁琪, 陈林, 李芳, 等, 2022. 被孢霉对土壤养分有效性和秸秆降解的影响 [J]. 土壤学报, 59(1):
206-217.]
PAN ZY, FU JF, ZHOU RJ, et al., 2007. Preliminary study of soil fungi in Schisandra chinensis garden and screening antagonism strains [J]. J Jilin Agric Univ, 29(6):
636-639. [潘争艳, 傅俊范, 周如军, 等, 2007. 五味子园根际真菌多样性初探及拮抗菌株筛选 [J]. 吉林农业大学学报, 29(6):
636-639.]
PORRAS-ALFARO A, BAYMAN P, 2011. Hidden fungi, emergent properties:
endophytes and microbiomes [J]. Ann Rev Phytopathol, 49(1):
291-315.
QIAO LJ, ZHOU SX, WEN TC, et al., 2018.Diversity of endophytic fungi from Nothapodytes pittosporoides in Guizhou Province [J]. Mycosystema, 37(1):
43-51. [谯利军, 周思旋, 文庭池, 等, 2018. 贵州马比木内生真菌的多样性研究 [J]. 菌物学报, 37(1):
43-51.]
QIN D, SHEN WY, GAO TC, et al., 2020. Kadanguslactones A-E, further oxygenated terpenoids from Kadsura angustifolia fermented by a symbiotic endophytic fungus, Penicillium ochrochloron SWUKD4.1850 [J]. Phyto-chemistry, 174:
112335.
QIN D, SHEN WY, WANG JQ, et al., 2019. Enhanced production of unusual triterpenoids from Kadsura angustifolia fermented by a symbiont endophytic fungus, Penicillium sp. SWUKD4.1850 [J]. Phytochemistry, 158:
56-66.
REN F, DONG W, YAN DH, 2019. Organs, cultivars, soil, and fruit properties affect structure of endophytic mycobiota of Pinggu peach trees [J]. Microorganisms, 7(9):
322.
RODRIGUEZ RJ, WHITE JF, AENOLD AE, et al., 2009. Fungal endophytes:
diversity and functional roles [J]. New Phytol, 182:
314-330.
SHU YZ, CHENG L, CHO JC, et al., 2012. Chemical constituents in roots and vine stems of Kadsura coccinea [J]. Chin Trad Herb Drugs, 43(3):
428-431. [舒永志, 成亮, 曺濬喆, 等, 2012. 黑老虎的化学成分研究 [J]. 中草药, 43(3):
428-431.]
SONG HC, QIN D, LIU HY, et al., 2021. Resorcylic acid lactones produced by an endophytic Penicillium ochrochloron strain from Kadsura angustifolia [J]. Planta Med, 87(3):
225-235.
SUN J, YAO J, HUANG SX, 2009. Antioxidant activity of polyphenol and anthocyanin extracts from fruits of Kadsura coccinea (Lem.) A.C. Smith [J]. Food Chem, 117(2):
276-281.
WANG L, QIN D, ZHANG K, et al., 2017. Metabolites from the co-culture of nigranoic acid and Umbelopsis dimorpha SWUKD3.1410, an endophytic fungus from Kadsura angustifolia [J]. Nat Prod Res, 31(12):
1414-1421.
WANG N, LI ZL, SONG DD, et al., 2012. Five new 3,4-seco-lanostane-type triterpenoids with antiproliferative activity in human leukemia cells isolated from the roots of Kadsura coccinea [J]. Planta Med, 78(15):
1661-1666.
WANG Y, CHANG F, CHENG HY, et al., 2019. Fungal diversity and differential analysis of fungi community composition in Paris polyphylla var. chinensis rhizosphere and endophytic [J]. Chin Trad Herb Drugs, 50(5):
1232-1237. [王艳, 常帆, 程虎印, 等, 2019. 重樓根际及药用部位内生真菌多样性与群落结构差异分析 [J]. 中草药, 50(5):
1232-1237.]
YANG J, DONG CB, ZHANG ZY, et al., 2019. Analyses on fungal community composition of Eucommia ulmoides rhizosphere soil in different areas [J]. Mycosystema, 38(3):
327-340. [杨娟, 董醇波, 张芝元, 等, 2019. 不同产地杜仲根际土真菌群落结构的差异性分析 [J] . 菌物学报, 38(3):
327-340.]
YANG YP, HUSSAIN N, ZHANG L, et al., 2020. Kadsura coccinea:
a rich source of structurally diverse and biologically important compounds [J]. Chin Herb Med, 12(3):
214-223.
ZENG JF, 1996. Southern Schisandra [M]// Flora Reipublicae Polularis Sinicae. Beijing:
Science Press:
23. [曾建飞, 1996. 南五味子属 [M]∥中国植物志. 北京:
科学出版社:
23.]
ZHANG YQ, WEN XS, WANG YM, et al., 2020. Isolation and identification of endophytic fungi from Schisandra chinensis seeds and bacteriostasis study [J]. Chin Med Mat, 43(5):
1087-1091. [张誉荠, 文湘穗, 王雨濛, 等, 2020. 种子内生真菌的分离鉴定及抑菌性研究 [J]. 中药材, 43(5):
1087-1091.]
ZHANG YQ, XU YH, WEN XS, et al., 2021. Response surface methodology for optimizing fermentation process of the endophytic fungus Purpureocillium lilacinum WG9 preventing Schisandra chinensis brown spot disease [J]. Mycosystema, 40(6):
1561-1574. [张誉荠, 许永华, 文湘穗, 等, 2021. 响应面法优化北五味子褐斑病内生生防真菌淡紫拟青霉WG9发酵工艺及发酵产物稳定性研究 [J] . 菌物学报, 40(6):
1561-1574.]
ZHAO LF,LIANG ZH, 2019. The research advance on gardening of Kadsura coccinea fruit [J]. Mod Hortic, 3(6):
109-110. [趙林峰, 梁忠厚, 2019. 黑老虎在居室园艺中的应用探究进展 [J]. 现代园艺, 93(6):
109-110.]
ZHAO QJ, SONG Y, CHEN HS, et al., 2014. Cytotoxic dibenzocyclooctadiene lignans from Kadsura coccinea [J]. Arch Pharm Res, 37(11):
1375-1379.
ZHAO TM, MA C, ZHU G, 2021. Chemical composition and biological activities of essential oils from the leaves, stems, and roots of Kadsura coccinea [J]. Molecules, 26(20):
6259.
ZHAO Y, QIN Y, LI N, et al., 2015. Screening and identification of endophytic fungi from Schisandra chinensis with antioxidant activity [J]. Chin Pharm, 26(31):
4384-4388. [赵玥, 秦源, 李娜, 等, 2015. 具有抗氧化活性的北五味子内生真菌的筛选及鉴定 [J]. 中国药房, 26(31):
4384-4388.]
ZHOU J, MIAO YF, FANG K, et al., 2019. Diversity of the endophytic and rhizosphere soil fungi of Ageratina adenophora [J]. Ecol Sci, 38(5):
1-7. [周婕, 苗一方, 方楷, 等, 2019. 紫茎泽兰内生真菌及其根际土壤真菌的多样性研究 [J]. 生态科学, 38(5):
1-7.]
(责任编辑 蒋巧媛 邓斯丽)
猜你喜欢内生真菌高通量测序多样性川明参轮作对烟地土壤微生物群落结构的影响中国中药杂志(2016年24期)2017-04-18多穗柯转录组分析及黄酮类化合物合成相关基因的挖掘中国中药杂志(2017年4期)2017-03-28人参根际真菌群落多样性及组成的变化中国中药杂志(2017年3期)2017-03-20LncRNAs作为miRNA的靶模拟物调节miRNA科技创新导报(2016年28期)2017-03-14黄草乌根部内生真菌的分离与鉴定中国医药导报(2016年30期)2016-12-28浅谈新时期群文辅导工作的特征散文百家·下旬刊(2016年9期)2016-11-23舞蹈表演的表现形式多样性研究人间(2016年27期)2016-11-11水磨地区蕨类植物多样性调查分析农业与技术(2016年15期)2016-11-09