初一下册数学知识点归纳【相似变换】※1、如果选用同一个长度单位量得两条线段AB,CD的长度分别是m、n,那么就说这两条线段的比AB:CD=m:n,或写成。※下面是小编为大家整理的初一下册数学知识点归纳4篇,供大家参考。
初一下册数学知识点归纳篇1
【相似变换】
※1、如果选用同一个长度单位量得两条线段AB,CD的长度分别是m、n,那么就说这两条线段的比AB:CD=m:n,或写成。
※2、四条线段a、b、c、d中,如果a与b的比等于c与d的比,即,那么这四条线段a、b、c、d叫做成比例线段,简称比例线段。
※3、][注意点:
①a:b=k,说明a是b的k倍;
②由于线段a、b的长度都是正数,所以k是正数;
③比与所选线段的长度单位无关,求出时两条线段的长度单位要一致;
④除了a=b之外,a:b≠b:a,与互为倒数;
【平移变换】
(1)图形平移前后的形状和大小没有变化,只是位置发生变化;
(2)图形平移后,对应点连成的线段平行且相等(或在同一直线上)
(3)多次平移相当于一次平移。
(4)多次对称后的图形等于平移后的图形。
(5)平移是由方向,距离决定的。
(6)经过平移,对应线段平行(或共线)且相等,对应角相等,对应点所连接的线段平行且相等。
这种将图形上的所有点都按照某个方向作相同距离的位置移动,叫做图形的平移运动,简称为平移
初一下册数学知识点归纳篇2
从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的角平分线(bisectorofangle)。三角形三个角平分线的交点叫做内心。
角平分线的性质
1、角平分线上的一点到角的两边距离相等。2.角的内部到角的两边距离相等的点在角的平分线上。(逆运用)三角形顶点到其内角的角平分线交对边的点连的一条线段,叫三角形的角平分线。三角形的角平分线不是角的平分线:一个是线段,一个是射线。三角形角平分线有个有趣的性质:三角形ABC中角A的平分线为AD,则AB:AC=BD:CD.三角形的三条角平分线相交于一点,该点为三角形的内心,且内心到三条边的距离相等。
3、角平分线是到角两边距离相等的所有点的集合。
中线
连接一个顶点与它对边中点的线段,叫做三角形的中线。中线的交点为重心,重心分中线2:1(顶点到重心:重心到对边中点)。中线:三角形中,连结一个顶点和它所对边的中点的连线段叫做三角形的中线。中线也是线段,一个三角形有3条中线。在一个角为30°直角三角形中。60°角所对应的边上的中线为斜边的一半。在一个三角形中,其一短边为斜边的一半,且这个三角形为30°的直角三角行,那么,60°角所对的边上的中线在此三角形中有三个等量。
图形变换的简单应用
考点一、平移(3~5分)
1、定义
把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同,图形的这种移动叫做平移变换,简称平移。
2、性质
(1)平移不改变图形的大小和形状,但图形上的每个点都沿同一方向进行了移动
(2)连接各组对应点的线段平行(或在同一直线上)且相等。
考点二、轴对称(3~5分)
1、定义
把一个图形沿着某条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线成轴对称,该直线叫做对称轴。
2、性质
(1)关于某条直线对称的两个图形是全等形。
(2)如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线。
(3)两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上。
3、判定
如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。
4、轴对称图形
把一个图形沿着某条直线折叠,如果直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴。
考点三、旋转(3~8分)
1、定义
把一个图形绕某一点O转动一个角度的图形变换叫做旋转,其中O叫做旋转中心,转动的角叫做旋转角。
2、性质
(1)对应点到旋转中心的距离相等。
(2)对应点与旋转中心所连线段的夹角等于旋转角。
考点四、中心对称(3分)
1、定义
把一个图形绕着某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。
2、性质
(1)关于中心对称的两个图形是全等形。
(2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。
(3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。
3、判定
如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。
4、中心对称图形
把一个图形绕某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个店就是它的对称中心。
考点五、坐标系中对称点的特征(3分)
1、关于原点对称的点的特征
两个点关于原点对称时,它们的坐标的符号相反,即点P(x,y)关于原点的对称点为P’(-x,-y)
2、关于x轴对称的点的特征
两个点关于x轴对称时,它们的坐标中,x相等,y的符号相反,即点P(x,y)关于x轴的对称点为P’(x,-y)
3、关于y轴对称的点的特征
两个点关于y轴对称时,它们的坐标中,y相等,x的符号相反,即点P(x,y)关于y轴的对称点为P’(-x,y)
初一下册数学知识点归纳篇3
单项式和多项式统称整式。
a)由数与字母的积组成的代数式叫做单项式。单独一个数或字母也是单项式。
b)单项式的系数是这个单项式的数字因数,作为单项式的系数,必须连同数字前面的性质符号,如果一个单项式只是字母的积,并非没有系数,系数为1或-1。
c)一个单项式中,所有字母的指数和叫做这个单项式的次数(注意:常数项的单项式次数为0)
a)几个单项式的和叫做多项式。在多项式中,每个单项式叫做多项式的项。其中,不含字母的项叫做常数项。一个多项式中,次数最高项的次数,叫做这个多项式的次数。
b)单项式和多项式都有次数,含有字母的单项式有系数,多项式没有系数。多项式的每一项都是单项式,一个多项式的项数就是这个多项式作为加数的`单项式的个数。多项式中每一项都有它们各自的次数,但是它们的次数不可能都作是为这个多项式的次数,一个多项式的次数只有一个,它是所含各项的次数中最高的那一项次数。
a)整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式。
b)括号前面是“-”号,去括号时,括号内各项要变号,一个数与多项式相乘时,这个数与括号内各项都要相乘。
初一下册数学知识点归纳篇4
图形初步认识
概念、定义:
1、我们把实物中抽象的各种图形统称为几何图形(geometricfigure)。
2、有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一平面内,它们是立体图形(solidfigure)。
3、有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在同一平面内,它们是平面图形(planefigure)。
4、将由平面图形围成的立体图形表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图(net)。
5、几何体简称为体(solid)。
6、包围着体的是面(surface),面有平的面和曲的面两种。
7、面与面相交的地方形成线(line),线和线相交的地方是点(point)。
8、点动成面,面动成线,线动成体。
9、经过探究可以得到一个基本事实:经过两点有一条直线,并且只有一条直线。
简述为:两点确定一条直线(公理)。
10、当两条不同的直线有一个公共点时,我们就称这两条直线相交(intersection),这个公共点叫做它们的交点(pointofintersection)。
11、点M把线段AB分成相等的两条线段AM和MB,点M叫做线段AB的中点(center)。
12、经过比较,我们可以得到一个关于线段的基本事实:两点的所有连线中,线段最短。简单说成:两点之间,线段最短。(公理)
13、连接两点间的线段的长度,叫做这两点的距离(distance)。
14、角∠(angle)也是一种基本的几何图形。
15、把一个周角360等分,每一份就是1度(degree)的角,记作1°;把一度的角60等分,每一份叫做1分的角,记作1′;把1分的`角60等分,每一份叫做1秒的角,记作1″。
16、从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线(angularbisector)。
17、如果两个角的和等于90°(直角),就是说这两个叫互为余角(complementary
angle),即其中的每一个角是另一个角的余角。
18、如果两个角的和等于180°(平角),就说这两个角互为补角(supplementary
angle),即其中一个角是另一个角的补角
19、等角的补角相等,等角的余角相等。
推荐访问:知识点 归纳 册数 初一下册数学知识点归纳大全 初一下册数学知识点归纳总结 人教版初一下册数学知识点归纳 北师大初一下册数学知识点归纳 青岛初一下册数学知识点归纳 初一下册数学知识点归纳总结北师大版 初一下册数学知识点归纳苏教版 初一下册数学知识点归纳第一单元 初一下册数学知识点归纳图片 初一下册数学知识点归纳冀教版