王梓萱 崔云安 王静
摘要:Riesz角度μ2(x)是Banach格空间中一个重要的几何常数,其与空间的不动点性质密切相关。研究了赋Luxemburg范数的Orlicz序列空间的M-常数和赋Luxemburg范数的Orlicz函数空间的M-常数,并在此基础上还给出了EΦ具有弱不动点性质的判别准则。
关键词:M-常数;Orlicz空间;Luexmburg范数;Riesz角度
DOI:10.15938/j.jhust.2022.04.018
中图分类号:
O177.2
文献标志码:
A
文章编号:
1007-2683(2022)04-0142-05
M-constants in Orlicz Spaces Equipped
with the Luxemburg Norm
WANG Zi-xuan,CUI Yun-an,WANG Jing
(School of Science, Harbin University of Science and Technology, Harbin 150080,China)
Abstract:Riesz angle μ2(x) is an important geometric constant in Banach lattice spaces, which is closely related to the fixed point properties of spaces. In this paper, the M-constants of Orlicz function spaces and Orlicz sequence spaces equipped with Luxemburg norm are obtained. On this basis, a criteria for EΦhas weak fixed point property was also given.
Keywords:M-constants; Orlicz spaces; Luxemburg norm; Riesz angles
0引言
1預备知识
2Orlicz序列空间的M-常数
3Orlicz函数空间的M-常数
参 考 文 献:
[1]SIMS B. Orthogonality and Fixed Points of Nonexpansive Maps[J]. Proc. Cent. Anal. Nat. Univ, 1988, 20:
178.
[2]CUI YA, FORALEWSKI P, HUDZIK H. M-constants in Orlicz-Lorentz Function Spaces[J]. Mathematische Nachrichten, 2019, 292(12):
2556.
[3]CUI YA, FORALEWSKI, PAWEL, et al. M-constants in Orlicz-Lorntz Sequence Spaces with Applications to Fixed Point Theory[J]. Fixed Point Theory An International Journal, 2018, 19(1):
141.
[4]HE X, CUI YA, HUDZIK H. The Fixed Point Property of Orlicz Sequence Spaces Equipped with the P-Amemiya Norm[J]. Fixed Point Theory and Applications, 2013(1):1.
[5]CUI YA, HUDZIK H, WISIA M. M-Constants, Dominguez-Benavides Coefficient, and Weak Fixed Point Property in Orlicz Sequence Spaces Equipped with the P-Amemiya Norm[J]. Fixed Point Theory and Applications, 2016, 89:
1.
[6]ABRAMOVICH Y. A., LOZANOVSKI G. Y. Certain Numerical Characteristics of KN-lineals[J]. Mathematical Notes, 1973, 14(5):
973.
[7]LIFSHITS E. A. On the Theory of Partially Ordered Banach Spaces[J]. Functional Analysis and Its Applications, 1969, 4(1):
75.
[8]LUXEMBURG W. Banach Function Spaces[J]. Van Gorcum, 1955, 129:
1.
[9]KRASNOSEL′SKI, M. A, RUTICKI, JA. B. Convex Functions and Orlicz Spaces[J]. P. Noordhoff, 1961.
[10]KRASNOSELSKI. M. A. Convex Functions and Orlicz Spaces[J]. US Atomic Energy Commission, 1960:
80.
[11]YAN Y. Riesz Angles of Orlicz Sequence Spaces[J]. Commentationes Mathematicae Universitatis Carolinae, 2002, 43(1):
938.
[12]孟院花. Banach格的直和性质[D]. 成都:西南交通大学, 2016:1.
[13]崔云安,郭晶晶.与不动点性质相关的新常数[J].哈尔滨理工大学学报, 2016, 21(2):
122.CUI Yunan, GUO Jingjing. A New Constant Associated with the Fixed Point Property[J]. Journal of Harbin University of Science and Technology , 2016, 21(2):
122.
[14]王稀. Banach空间中与不动点性质有关的几何性质[D].哈尔滨:哈尔滨工业大学,2017.
(编辑:温泽宇)
猜你喜欢常数关于Landau常数和Euler-Mascheroni常数的渐近展开式以及Stirling级数的系数数学年刊A辑(中文版)(2021年1期)2021-06-09基于中药质量常数的牡丹皮饮片等级划分中成药(2018年3期)2018-05-07几个常数项级数的和山西大同大学学报(自然科学版)(2016年4期)2016-11-27万有引力常数的测量新高考·高一物理(2016年3期)2016-05-18基于底片四常数模型的天体测量归算广东石油化工学院学报(2016年6期)2016-05-17紫外分光光度法测定芒果苷苷元的解离常数云南中医学院学报(2014年5期)2014-07-31宇宙常数的量值和在宇宙演化中的作用河南科技(2014年18期)2014-02-27浅谈普朗克常数以及它的测定河南科技(2014年1期)2014-02-27光电效应测普朗克常数新数据处理方法物理与工程(2013年3期)2013-03-11紫外分光光度法测定曲札芪苷的解离常数云南中医学院学报(2012年3期)2012-07-31